

Los-Vauglit Test assures us that Th (ACFo) is complete. This uses: the theory has no finite models; and the theory is 2⁴⁰ categoing L t Jerzy Loś, Robert Vaught (1954) C-wordes Logic Algebre (Cauchy) complete & No -> (model) complete « Continuous y compact » No convergent yes categorical » Convected yes closed F Let L be a language and let X be the collection of all L-structures. For any set of sentences Σ over L, let $K_{\Sigma} = sd$ of of L-structures satisfying all the sentences in Σ Then X is a top. space with K_{Σ} as its basic closed set. This space is (topologically) compact. $\Im K_{0}$: θ sentence over L \Im are basic closed sets. Eq. K= $\mathbb{Q}[\delta z] = \{a + b + \overline{z} : a, b \in \mathbb{Q}\}$ has two field automorphisms, $\iota(a + b + \overline{z}) = a - b + \overline{z}$. T $(a + b + \overline{z}) = a - b + \overline{z}$.

C hels uncontably many adomorphisms but only two of them are continuous. Where do we get this?
$\mathbb{C} \subset \mathbb{C}[x] \subset \mathbb{C}(x) = K \subset K$
The ring C[x] has automorphisms f(x) ~ f(x+a)
$K = \mathbb{C}(x) = \begin{cases} \frac{f(x)}{q(x)} & : & f(x), g(x) \in \mathbb{C}[x] \end{cases}$
is a field extension of C and it's not alg. closed.
K[t] has irreducible polys eg. t-x e K[t]
\overline{K} is an alg. closed field of char. O $ \overline{K} = 2^{R_0} = C $
But there is only one alg. closed field of char. O for each uncomtable cardinality (the theory of ACF, is uncountably categorical) so $K \cong \mathbb{C}$.
x has lots of automorphisms i.e. I has lots of automorphisms.
R has only one automorphism, the identify 1(a) = a.
R has only one automorphism, the identify $I(a) = a$. Axiang for R?
R has only one automorphism, the identify $I(a) = a$. Axians for R? Field axions
R has only one automorphism, the identity $I(a) = a$. Axians for R? Field axions Introduce a new binary relation symbol '<' ($a < b$ is a shorthand for $R(a, b)$) and axions $(\forall a)(\forall b)[(a < b) \vee (a = b) \vee (b < a)) \wedge \neg[(a < b) \wedge (b < a)] \wedge \neg[(a < b) \wedge (a = b)] \wedge \neg[(a < b) \wedge (a = b)]$ $(\forall a)(\forall b)(\forall c)((a < b) \wedge (b < c)) \rightarrow (a < c))$

(VaXVb)(Ve) ((a <b)-> (a+c < b+c) ~ (c>o)-> (ac < bc)])</b)->
R is the migne ordered field which is (Cauchy)-complete and having Q as a dense subfield.
But we cannot state "Cauchy complete" in first order theory of fields.
How much of the theory of R can be captured in first order logic ?
Ordered field axions
• $(\forall a)(a \neq 0 \rightarrow a^2 > 0)$
• $(\forall a)(a>0 \rightarrow (\exists b)(b=a))$
 Every polynomial f(x) ∈ ℝ[x] of odd degree has a root. Eq. for degree \$
$(\forall a)(\forall b)(\forall c)(\exists x)(x^3+qx^2+bx+c=0)$
The first order theory of R is complete.
However the theory is not K-categorical for any cardinality K. (No models for K finite; more than one for each infinite K.)
Eq. for $K = R_0 : \overline{Q} \cap R$
For K= 2 ⁴⁰ : IR; hyperreals *R
Any model of RCF is a real closed field. Every real closed field is <u>elementarily</u> equivalent to R (i.e. has the same first order theory). R and C are elementarily equivalent.
· · · · · · · · · · · · · · · · · · ·

Emil Artin (1927) proved the Hilbert 17th problem using mathematical logic. Hilbert's 17th Problem tilbertis Itth troblem Let $f(x_1, ..., x_n) \in \mathbb{R}[x_1, ..., x_n]$, is it necessary then $f = s_1^2 + ... + s_k^2$ for some rotional functions $s_i(x_1, ..., x_n) \in \mathbb{R}(x_1, ..., x_n)$? (Pfister: $k \leq 2^n$) Motzkin's example: n=2. f(x,y) = 1-3x²y² + x²y⁴ + x⁴y².²⁰ This is not expressible as a sum of Squares of poly's but $f(x,y) = \left[\frac{x^2y(x^2+y^2-2)}{x^2+y^2}\right]^2 + \left[\frac{xy^2(x^2+y^2-2)}{x^2+y^2}\right]^2 + \left[\frac{xy(x^2+y^2-2)}{x^2+y^2}\right]^2 + \left[\frac{x^2-y^2}{x^2+y^2}\right]^2.$