

Trivial examples: Fix $x_i \in X$. Define $\mu(A) = \begin{cases} 0 & \text{if } x_i \notin A \\ 1 & \text{if } x_i \in A \end{cases}$. A masureable cardinal is a cardinal k Trivial examples: Fix $x \in X$. Define μ (A
whoich admits a nontrivial countably additive)
es such a K exist? It so then any
en $K < K'$, μ nortrivial contrably additive? which admits a nontrivial [countably additive] two-valued maasure. Does such a K exist? If so then any larger cardinal satisfies this condition. Given $K < K'$, μ nortrivial contably additive two-valued measure on K, lift it to one on k' . $1:K\longrightarrow K'$ injection. Define (for $B\subseteq K'$) μ (B) = μ (i'(B)). (Ulam) If there exists a nontrivial countably additive two-valued measure on an m (Clam) If there exists a nontrivial countably additive two-valued ineasure a nontrivial K then let \wedge we desine Er ell $K \leq |X|$.
a nontrivial K additive two-valued measure for ell $K \leq |X|$. μ is k -additive if A measurable candinal is an uncountable $\mu(\bigsqcup_{\alpha\in I}A_\alpha)=$ Candinal K having a *K*-additive two-valued measure. $\mu(\bigsqcup_{\alpha\in I}A_\alpha)=$ $\mu(\bigcup_{\alpha\in I}A_{\alpha})=\sum_{\alpha\in I}\mu(A_{\alpha})$ for ever $\begin{array}{ccc} \mathcal{D}_0 & \text{then} & \text{if} & \mathcal{E} & \mathcal{E} \\ \mathcal{D}_0 & \text{then} & \text{if} & \mathcal{E} & \mathcal{E} \\ \mathcal{D}_0 & \text{then} & \mathcal{E} & \mathcal{E} & \mathcal{E} \end{array}$ (A_a $\subseteq X$) $p \frac{d\log q}{d\log q}$ sets $[0,1] = \bigsqcup \{k\}$ $(A_{\alpha} \subseteq X)$. N_{ρ} c $\frac{1}{2}$ and index $\frac{1}{2}$. Hey exist? And who cares

be they exist? And who cares
 $\frac{1}{2}$. $\alpha\in [0,1]$ $C = 1$ or when $C = 2$
 $\bigcap_{\substack{b \in C \\ b \text{ odd}}}\bigcup_{\substack{c \text{ in the image of } \\ \text{all of }$

Projective Herrarchy \leq_{n}^{\prime} , Π_{n}^{\prime} , $\Delta_n = \sum_{n=1}^{n} \cup \overline{\mu}_n$ $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$ A is a continuous image of a Borel Σ = {analytic set in X } A $\xi \Sigma$ iff II, = { coanalgtic sets in X} = { complements of analytic sets } (Polish space) $\mathcal{Z}_{z}^{\prime}=\left\{$ continuous inages of coanalytic cets} is lebesque measureable. If there exist measurable civilinals, then every \geq -set Coming to: an application a large cardinal to the first world. See
Non-essociative algebra: Keis, Quandles Racks, Shelves, (San Nelson, Quandles)
A kei x a set S with a binary operation D satisfying for all xy.zes, $(x \mapsto y) \mapsto y = x$ $(x \mapsto x \mapsto y$ is involutionary) (3) $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$ $(\triangleright z)$ is right-distributive over itself) If $(S, 4)$ satisfies (3), it is a shalf. If it satisfies (i) and (3), it is a rack.
If $(S, 4)$ satisfies (1), (3) and (2) it is a quadle.
If $(S, 4)$ satisfies (1), (3) and (2) it is a quadle.
(2): For all y, the map $S \rightarrow S$

Kei colorings of braids Given a braid oc B. and a Kei (K, D) we color the arcs in a braid diagram of o \angle b \triangleright a This is the same as requiring that if we label the tops of the u strands to
labels on the bottom are independent of the closica of diagram used for the braid u strands, the $\overline{\mathsf{x}}$ $|\zeta\rangle$ $)$ x_{D} 4 $55(100)$ $(x \mapsto x)$ \mapsto $(x \mapsto x)$

 A_0 $\overline{2}$ $8¹$ $\overline{2}$ h A2 [↑] E - $\mathbf 5$ $\overline{6}$ A_1 $\overline{7}$ $\overline{7}$ $\bf 8$ $\overline{2}$ $\overline{5}$ $\overline{2}$ Figure 2: Multiplication tables for the first four Laver tables
Conjecture As $n \rightarrow \infty$ the period of the first row of the table $\rightarrow \infty$ ω Conjecture As now the prior of laver cardinal (a certain kind of large the conjections was it was how to prove this in ZFC. $A₂$ -> $A₂$ $inverses$ system of left shelves $A_{1} \longrightarrow A_{0}$

Let X be any set and lit $M = \{ \text{injective maps } X \to X \}.$ Let X be any sel and us $M = \sum_{r=0}^{n} \frac{1}{r}$ (1.00)
Then M is a monoid under composition. (A group iff X is finite) $(1.6 - 1)$ Then $M \ge a$ monora mass composition. (A group $M + N \ge 3$ finite
let A be a set of sentences over some language L , and let $M, N \in A$
 $\cong A$ is a suburodel of \mathbb{Q} (there is a 1-to-1 map \mathbb{Z}
 $\downarrow \cong A$ and \mathbb{Z} Let A be a set of sentences over some language L , and let $M, N \vDash A$. (avodels of A i.e. L-structures $eg.$ A: axions for a ring w_i which satisfy all Z , $Q = A$ and Z is a submodel of Q (there is a 1-to-1 map $Z \rightarrow Q$ preserving)
 Z , $Q = A$ and Z is a submodel of Q (there is a 1-to-1 map $Z \rightarrow Q$ preserving) there are sentences of over L (elementary embaraction)
such that $\mathbb{Z} \models \phi$, $\mathbb{Q} \models \neg \phi$ (or the other way around) e.g. such the $z \in \varphi$, $(x \in x)$
eg. $\phi : (\exists x)(\forall y)(\neg (y + y = x))$. We say $L: M \rightarrow N$ ($M, N \in A$) is an elementary embedding if L is injective $L(M)$ is demandering equivalent to N . and for every sentence & l'(M) CN submodel For all ϕ , $l(M) = \phi$ iff $N = \phi$. Loud Evere 2 Loud Loud A portion of the Koch Snowflake curve

There are wany embeddings of C in itself. Pick such an embedding 1: C-> C
C are models of the field axioms A. (C) is an elementary sub $C, L(C) \subset C$ are models of the field axioms $A, L(C)$ is an elementary submodel
of C i.e. $L: C \to C$ is an elementary embedding i.e. C is an elementary extension of $L(C)$.
Note: $L: C \rightarrow C$ persentes $0, 1, +, x, -$ but not the topology. There are wany embeddings of C in itself. Pick such an em
 $C_1(C) \subset C$ are models of the field axioms A_1 (C) is

of C_1 i.e. $C \to C$ is an elementary embedding i.e. C_1

extension of $L(C)$.

Note: $L: C \to C$ personve For models of ZFC (L: E) a Laver cardinal is a cardinal K such that
the V_K admits an elementary embedding $L: V_K \longrightarrow V_K$ which is not surjective. C, $L(C) \subset C^0$ are models of the field axiom
of C i.e. $L: C \to C$ is an elementary embed
extension of $L(C)$.
Note: $L: C \to C$ persentes $0, 1, +, x, -1$ but a
for models of ZFC ($L: \infty$) a large canding
the V_K admits an elemen If $f.g: X \rightarrow X$ are injective them $f \triangleright g: X \rightarrow X$ is $f,g: X \rightarrow X$ are injective them $fpg: X \rightarrow X$ is
 $(fpg)(x): \begin{cases} f_gf^{-1}(x) \\ x \end{cases}$, if $x \in f(X)$
 $f(x) = \begin{cases} f_{g,g}(x) \\ x \end{cases}$ eg. $f: [0, \infty) \rightarrow [0, \infty), \quad x \mapsto x+1$ f 2 · **1** Providence of the control of the $\begin{cases} \n\mathcal{F}(\mathbf{y}) = \n\begin{cases} \n\mathcal{F}(\mathbf{x}) & \text{if } \mathbf{x} \in \mathcal{F}(\mathbf{x}) \\ \n\mathcal{F}(\mathbf{x}) & \text{if } \mathbf{x} \in \mathcal{F}(\mathbf{x}) \n\end{cases} \n\end{cases}$

