

Group Theory: an example of a first-order axio	mélic system
An informal proof in group theory Theorem If G is a (multiplicative) group of expo	
Theorem If G is a (multiplicative) group of expo	neut 2, then 6 is declian.
(G has exponent n if g"=1 for all g ∈ G.)	
	multiplying on the left by "a" and on the right by "b"
(Informal) proof: Let $a, b \in G$. Since $abab = (ab)^2 = 1$, gives $a c b a b b = a 1 b$, i.e. $ba = ab$.	
asives a ababb = a1b, i.e. $ba = ab$. \Box Axions of Group Theory: $(x_i)_{i \in I} = \mu(x_i)_{i \in I}$	Special symbols for first order logic: 3, 4 percetters, 1, V,
$(D: (\forall x) ((x*1 = x) \land (1*x = x))$	(\mathbf{y},\mathbf{e})
4580C: (4x)(4y)(4z) ((x+y)+z = x+ (y+z))	Symbols for constants: 4,
	Symbols for constants: 1, Symbols for functions: *, sty means m(x,y) Symbols for relations: =
$INV: (\forall x) (\exists y) ((x + y = 1)) \land (y + x = 1))$	
We happen to know some groups including C. (cyclic grou	p of order ~), S. (symmetric group of legree ~),
GROUPS = { ID, ASSOC, INV } = { (4x) (6x+1)=,	. } (the set consisting of our three arions of group theory)
$GROUPS = \{ID, ASSOC, INV \} = \{(\forall \pi)(Gr*i) = \dots, \\ S_{5} \text{ is a group, } i.e. S_{5} \models GROUPS (S_{5} \text{ is a model of} \\ \end{cases}$	(ROUPS)
ABEL: $(\forall x) (\forall y) (\pi + y = y + \pi)$	
ABEL-GPS = GROUPS U {ABEL 3. Sz is a non-abalian gr	oup; Sy # ABEL; Sy # ABEL-GPS.
and the second	ith an interpretation of all the symbols for constants,
A structure has an underlying set of elements, begether w functions, and relations.	

How do we rewrite our informal proof (abo	we) as a formal proof in first order logic?	
ABEL is a theorem in the theory of gro	(Vx)(x*x=1) ups of exponent 2, i.e. Et ABEL. in which every step follows from previous steps by a statement in E, or an axiom of first order logic, or a rule of inference.	
A theorem is a sequence of steps 54	in which every step follows from previous steps by	
	a statement in E, or an axiom of hist order logic,	
5. 5.	To a solution of inference.	
	TT Rim of (cumbralic) proof	
Σ-	This is a brand (symbolic) proof!	
	$\epsilon_{in} \approx \epsilon \Sigma$	
An outline of a formal proof: Z + EXP2	since $EXP2 \in \mathbb{Z}$ (A4) $p.86$	
$\Sigma \vdash (Exps)$	$\rightarrow (\forall a)(a*a=1)) (A4) p.86$ (81) p.86	
Z ⊢ (∀a) (a*	(a = 1) Moduls Ionens (a = 1)	
	(b+b=1)	
S, W.M	l(a+b) + la+b) = 1	
	((a+b) + (a+b) = 1)	
(∀a) (∀b)) ((a+ (la+b)+ (a+b)) = a+1)	
	$(\forall b) (a \ast b = b \ast q)$	
RICHARDS BORCHERDS		
JOEL DAVID HAMKING	x≠y x≠≥ y≠≥	
0072. (2-)(2)(4)(2)(4) ((2-1)) (2-1)	$ (g=\varepsilon)) \wedge (\tau(x=y)) \wedge (\tau(x=\varepsilon)) \wedge (\tau(y=\varepsilon)) $	
ULDS . [13] / [3] / [3] / [3] / [4] / (4] - 3/		
"Here and at most llas	"the a are at last 3 element	
were are at most three	e connects much as a fixman that a remain is	
ABEL is mappendent of GROUPS	you cannot either prove of assistance (- Converse	
abelian). GROUPS IT ABEL	e elements "there are at last 3 elements" (you cannot either prove or disprove that a general group is and GROUPS H "ABEL. This is because C3 = GROUPS; S2#ABEL C3 = ABEL but 32+ GROUPS; S2#ABEL	L

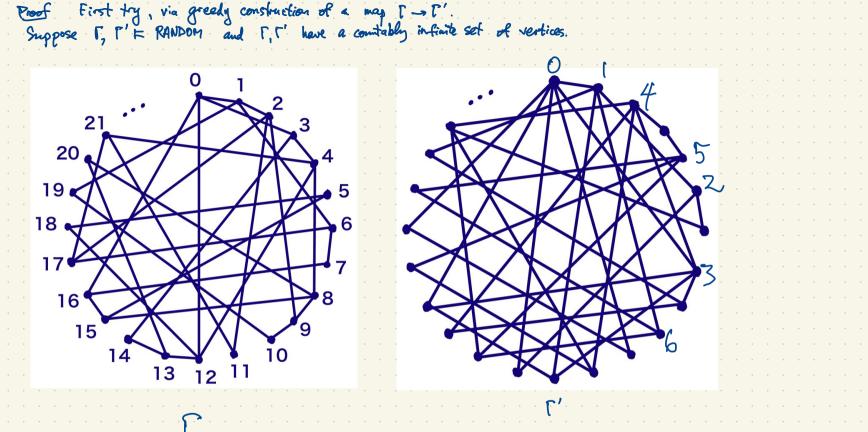
In an arbitrary first-order theory, with axioms Z, a statement θ is independent of Z if
$2 \neq \theta$ and $2 \neq \tau \theta$:
277 € and 217 0: Soundness Theorem: IF Z+Ə then Ə holds in every model of Z i.e. MED whenever MEZ. Completeness Theorem: Converse holds: IF D holds in every model of Z, then it is provable from Z i.e. if MED whenever MEZ, then Z+D. Assume Z is consistent
I MED whenever MEZ. then Z+O.
Assume 2 is consistent So: θ is independent of 2 iff there are models of 2 in which θ holds, and models of θ in which
9. Kails.
S is consistent if we cannot prove a contradiction from Z is ZH (DA 70) for some D.
Z is consistent if we cannot prove a contradiction from Z , i.e. $Z + (\theta \wedge \neg \theta)$ for some θ . Equivalently, Z is consistent iff it has a model.
Eq. ABEL is independent of GROUPS.
GROUPS is consistent. COULDS 11 & OPPR3 is consistent since it has a model. In fact it has a unique model up to isomorphism:
the cyclic group C of order 3. The group Cz (or its theory) is categorical.
GROUPS is consistent. GROUPS U {ORDS} is consistent since it has a model. In fact it has a unique model up to isomorphism: the cyclic group C3 of order 3. The group C3 (or its theory) is <u>categorical</u> . GROUPS is not categorial. (There are models, but not a unique model.)
An alteractive to INV: $(\forall x)(\exists y)((x + y = 1) \land (y + x = 1))$ is to add a function symbol $\iota(\cdot)$ to the language namely $(\forall x)((x + \iota(x) = 1) \land (\iota(x) + x = 1))$ We already have a binary function symbol $\mu(\cdot, \cdot), \mu(x, g) = \pi + g$
An alteractive to INV: $(\forall x)(=y)((x+y=1) \land (y+z))$ namely $(\forall x)((x+y)=1) \land (u(x)+x=1))$ A theorem of Σ is a statement that an he proved from Σ . A proof is a sequence of statements such
A theorem of Z is a statement that an he proved from Z. A proof is a sequence of statements such The theory of Z is Th(Z) = { statements provable from Z} = { theorems of Z}.

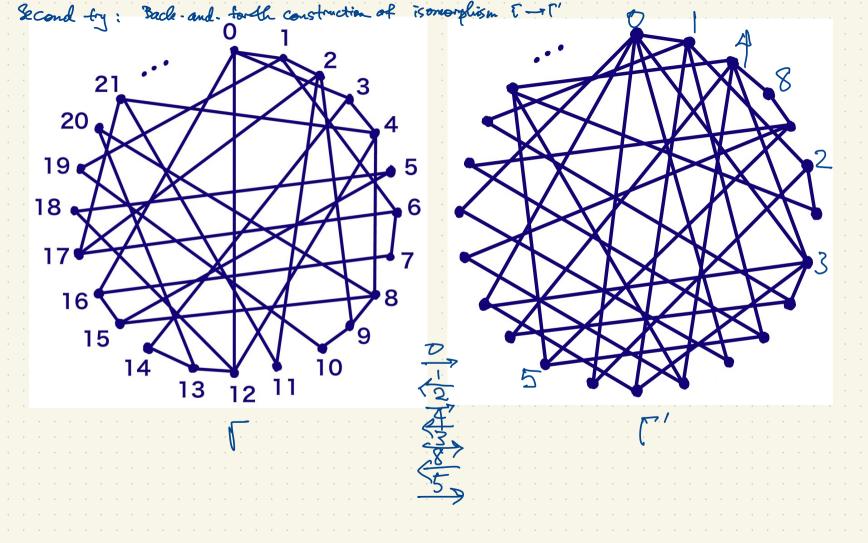
First order theory of graphs has no symbols for con symbol R(·, ·), for the binary polation of adjacancy. Axions of graph theory: two axioms to indicate that IRREFL: (t/x)(¬(x~x))	when will allowing R(x,u) as and one relation
symbol K(', ') for the bridery obtained of adjacency.	tolotion à quin otrè a l'instantive
Axions of graph theory: two axioms to functions	an respected is some or and the option
$(\forall x \in \mathcal{F}L: (\forall x \in \mathcal{F}(\forall x \in \mathcal{F})))$	
SYM: (∀x)(∀y) ((x~y) → (y~x))	
GRAPHS = {IRREFL, SYM}	$M(N R = X_{r}) \wedge M(r = X_{r}) \wedge M(r = X_{r}) \wedge M(r = X_{r})) $
F GRAPHS of # GRAPHS	"there are at least 7 vertices" MAX7: (Jx,)(Jx,)(Jx,)(by)((y=x)) ···· · (y=x) "There are at nost 7 vertices"
To say that I has exactly 7 vertices, we could writ	there are at wost t vertices
$ORD7 : (\exists x_1) (\exists x_2) \cdots (\exists x_q) [(f(x_1 = x_2)) \land \cdots \land (f(x_q = x_q))) \land (\forall x_1 \in C(x_q = x_q))) \land (\forall x_1 \in C(x_q = x_q)) \land (\forall x_1 \in C(x_1 \in C(x_q = x_q)) \land (\forall x_1 \in C(x_1 \in C($	$y)((y=x_1)v(y=x_2)v\cdots v(y=x_7))]$
GRAPHS V & ORDF] : axioms for graphs with exactly	
Axioms for infinite graphs: GRAPHS U { MIN1, MIN2, MIN3, MIN4, }	· · · · · · · · · · · · · · · · · · ·
In first order graph gleory, we cannot express the condition that a graph has at mos	tion that a graph is finite. t 17 vertices.
We cannot express the condition that a graph is countably	two vertices.
The diameter of a graph is the max. distance between The distance between two vertices is the bugth of the	sbortest path between them.
eg. To say that a graph has diameter, 2 in first order	
$(\forall x)(\forall y)(\forall x=y) \rightarrow ((x \sim y) \vee (\exists z)(x \sim z) \wedge (\exists \sim y)))$	(diameter at met 2) ~ (7x) (7y) ((x~y)) ~ ~ (n=y)
dist $(x, y) = 1$ dist $(x, y) \leq 2$	

_

In first order theory, we can express the condition that a graph has diameter 7 or diameter at most but we cannot express the notion that a graph is connected.	E 7
Graphs of diameter = 1 (i.e. cliques): GRAPHS V {(Vx)(Vy)((x=y) v (x~y))} = COMPL_GRPHS	
has models Ko, Ki, Kz, Kz, Kz, Ky,	
For each candinaliby K (eg. K=0, 5, 5, 5, 2,) there is a model K _K = COMPL_GRPHS	
and any two models of the Comitably infinite IRI = continueum Same cardinality are isomorphic.	
COMPL_GRPHS U { DRD4} has a migne model Ka= or up to isomorphism. Th (Ka) = S all statements in graph theory that hold in Ka } Ka (or Th (Ka)) is categorical: Ka is the migne model (up to isomorphism) of	
COMPL_GRATES v ford + 3 of Th(Kg)	
COMPL_GRAPHS U {MINI, MINZ, } has infinitely many models. But for each cardinality K. there is only one	ک
"there are inf. model (up to isomorphusm) of Cardinality K. many vertices" This theory is not categorical but it is K-categorical.	

Consider the graph with constably infinite vertex set {5, 13, 17, 29, 37, 41, 53, 61, } (all primes	$\equiv 1 \mod 4$.
	Quadretic	Reciprocity).
5 13 Let's call this graph R F GRAPHSU [INF] U { Ym,n = N }		aciprocity Theorem mainder Theorem
53 29 X+T2 ~ TifT3 ~ ~ y+1+ y1	· ≈≁y, ∧ …	∧ ~ 4yn))
Ko, Tur, Kz	· · · · · ·	· · · · · · · ·
R = Randon graph = Erdős-Rényi graph = Rado graph = Universal Graph	· · · · · ·	· · · · · · · · ·
Take any contably infinite set V as vertices. For all x+y in V, flip a coin. Heads? join x-y. Tails? x+j (unjoined), With probability I, R = Tm, for all m, n , even if the coin is biased.		
Theorem Every countably infinite great setisfying Then for all M. 4 is isomorphie	ЪR,	· · · · · · · · · · · · · · · · · · ·
GRAPHS V SINFS V & Em, n : m, n E M 3 has only one countable model. (up to I don't need this existin; it follows from {1/m, n : m, n \in M}	(SOMOTPUS	*)
i.e. K is Ko-cillgorical (constably callgorical).		
SRANDOM :=		





Question: Is there a universal random graph on $ \mathbb{R} = 2^{4}$ vertices? Status of this problem is not fully known, but independent of ZIC, depends on CH; (Shelinh)
Chromotic numbers of graphs: Given a graph I, a proper (vertex) claring of I is a coloring of the vertices so that no two vertices of the same color are joined. The chromatic number of I, y(I), is the smallest number of colors for which I has a proper coloring. Eq.
$\chi(1) = 3.$
Theorem (Appel-Haken) If T is a planar graph, then $\chi(r) \leq 4$. From this essent, the generalization to infinite planar graphs holds: If T is any planar graph, then $\chi(r) \leq 4$.
First express the condition $\chi(\Gamma) \leq k$ in first order logic: Language in any first-order system has symbols for constants, r-awy functions, r-ary relations. We are given a graph Γ and a positive integer k . Introduce constants v_{11}, v_{22}, \cdots , one for each vertex of the graph. Also k many relations $(j(\cdot), \cdots, j_k(\cdot))$
Arions: $(\forall x)((C_1(x) \cup C_2(x) \cup \cdots \cup C_k(x)) \land \neg ((C_1(x) \land C_2(x)) \lor (C_1(x) \land C_3(x)))$ For every pair of adjacent vertices in j in Γ , include an arion $\neg (C_1(x) \land C_2(x))$. and each l in $\xi_{1,2,\dots,k}$
Let $Z_{\Gamma,k}$ be the set of axioms listed here. A model of $Z_{\Gamma,k}$, i.e. $M \models Z_{\Gamma,k}$, is a proper k-adaring of Γ . of Γ . Such a model exists $F \neq \chi(\Gamma) \leq k$.

By the compactness theorem, $\Sigma_{\Gamma,k}$ has a model iff every finite subset of $\Sigma_{\Gamma,k}$ has a model i.e. iff every finite gubgraph of Γ has chrometic number $\leq k$. More generally, if T is any infinite greph, then M(T) = k iff every finite subgraph TST has $\chi(\Gamma_0) \leq k$; and $\chi(\Gamma_0) = k$ for some finite $\Gamma_0 \subseteq \Gamma$. By the very, the compactness theorem follows easily from the confetences theorem. We won't prove the completences theorem. Here's the argument in the case of graph coloring: If $Z_{\Gamma,k}$ has a model $M \models Z_{\Gamma,k}$, then every finite subset $Z_0 \subseteq Z_{\Gamma,k}$ has a model $M \models Z_0$. Conversely, suppose every finite subset $\Sigma_0 \subseteq \Sigma_{\Gamma,k}$ has a model ("every finite subgraph $\Gamma_0 \subseteq \Gamma$ is properly k-colorable). Suppose $\Sigma_{\Gamma,k}$ does not have a model (Γ is not properly k-colorable). This says $\Sigma_{\Gamma,k}$ is inconsistent and we can derive a contradiction from $\Sigma_{\Gamma,k}$ by the completeness theorem i.e. $\sum_{r,k} t (\theta \land (\theta))$ for some θ . A proof of $\theta \land (\theta)$ from $\sum_{r,k}$ only uses finitely many of our constants v_i , c_i . These v_i 's lie in a finite subgraph $\Gamma_0 \subseteq \Gamma$. This is a contradiction. is not planer: it has K5 as a minor. K₅ A K₁ K₅ K₄ K_{3,3}

Axions for linear (total) order: Language: gingle binary relation symbol R(', '). We denote R(x, y) by x < y.
Axions for linear order: (Yx)(Yy) ((x=y) v (x <y) (y<x))<="" th="" v=""></y)>
becomply axian: $(\exists x)(x = x)$ $(\forall x)(\forall y)(\neg(x = y) \leftrightarrow ((x < y) \vee (y < x)))$
(∀x)(∀y) (~ ((x <y) (y<x)))<="" td="" ∧=""></y)>
$(\forall x)(\forall y)(\forall z)(((x < y) \land (y < z)) \rightarrow (x < z))$
Danse linear order without endpoints:
axions for linear order
$(\forall x)(\forall y)((x < y) \rightarrow (\exists z)((x < z) \land (z < y)))$
$(\forall x)(\exists y)(x < y)$
$(\forall \pi) (\exists y) (y < \pi)$
Models of 'dense linear order without endpoints": [(0, i) CIR, with usual '<' } isomorphic Here are three models, no two of which are [R with usual '<' } isomorphic. Somorphic.
Komorphic. There are many models for every [QV (0, i) with ordinary '<' meanitable cardinality K, [QV (0, i) with ordinary '<'

(Cantor (Q, <) = dense linear order without endpoints " 13 the unique countable
model up to isomorphism.
Proof <u>4. 23 05:6.</u> Back- and - torth.
The theory of dense linear orders without endpoints is 5% - categorical (countably categorical
Other the categorical theories: The theory of the complete graph. The theory of the random graph,
"Danse linear order without end points" is not recategorical for any uncontable cardinality.
"Danse linear order without endpoints" is not & categorical for any uncontable cardinality. Theorem (Mortey) If a theory is K-categorical for some uncontable cardinality K, then it is K-categorical for all momitable K (hence "uncontably categorial").
(inear Algebra: what are suitable axions for vector spaces? Fix a field F and write down axioms for vector spaces over F. One way: All elements of the domain (underlying set of the model) are rectors. Implement scalar multiplication
We'll also use a constant subular o Axian Scheing
Axions: $(\forall v)(\forall w)(v+w = w+v)$ $(\forall u)(\forall v)(\forall w)(v+w = w+v)$ $(\forall u)(\forall v)(\forall w)((u+v)+w = u+(v+w))$ $(\forall v)(m_c(v) + m_d(v) = m_{crd}(v))$ (for every c, d $\in F$ we have such an arise
$(\forall v)(\forall v)(\forall w)((u+v)+w = u+(v+w)) \qquad (\forall v)(\forall w)(\mu_{e}(v+w) = \mu_{e}(v) + \mu_{e}(w)) \qquad (\forall v)(\forall w)(\forall w)(\forall w)(\forall w) = \mu_{e}(v) + \mu_{e}(w))$

$(\forall v) (\mu_{i}(v) = v)$
$(\forall v) (\gamma_0(v) = 0)$
Models of this theory are vector spaces over F.
There are he nonisciantic models of the same cardinality.
Suppose F=Q. For every uncountable K, there is a unique model of cardinality K up to isomorphism (the theory of votional vector spaces is uncountably categorical) but not for K= 460: there are infinitely many vector spaces of cardinality 450.
not for K= 40: there are infinitely many vector spaces of cardinality 40.
$(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}, \mathbf{w}_{5}) = \mathbf{w}_{2}^{2} \mathbf{w}_{3}^{2} \mathbf{w}_{4}^{2} \mathbf{w}_{5}^{2} $
Think of Qu'as the vector space of all polynomials in t with rational coefficients;
$\mathbb{Q}^{2} = \{ f_{ct} \in \mathbb{Q}[t] : deg f_{ct} < n \} $ has basis $[1, t, t], t_{j}, t_{j}$
\mathbb{Q}^{∞} has besis $\{i, t, t, t, t\}$
Q[+]
Don't confuse with O[[+]] = all pover series int with votional coefficients which has uncontable dimension.
Theorem of Engeler, Ryll-Nardeewski, Svenonius : No-categoricity of M is equivalent to a "large" group of automorphisms of M : Aut M has only finitely many ortoits on k-tuples of "points" (elements of M). Such a group is called <u>oligomorphic</u> . Examples
k-tuples of "points" (elements of M). Such a group is called <u>oligomorphic</u> . Examples

Any two k-sets of distinct rationals are in the same orbit For the commutable random graph R, the number of orbit for k=1, 2, 3, 9, gives a sequence 1, 2, 4, 11, 34,	nt of Nits on	Aut (Q, < k-sets of). distinct	ver(ic2)
Nothing is better than a meal in a tent-star restant A plain caféteria meal is better than nothing. Therefore a plain catetoria meal is better than a meal in	rant. - a b	bur-star resta	event.	· · · · · · · · · · · · · · · · · · ·
			5 - 1. · · ·	
Why would we not allow the domain of a model (the - $(\forall x)(\varphi(x)) \rightarrow \varphi(a)$ $ = \varphi(a) \rightarrow (\exists x)(\varphi(x))$ $ = (\forall x)(\varphi(x)) \rightarrow (\exists x)(\varphi(x))$	· · · · ·	Liging Set)	· · · · ·	empty :

a model of Σ is an L-structure M satisfying Σ i.e. every sentence $\theta \in \Sigma$ is satisfied by M; we denote $M \models \Sigma$.
How do ve understand the statement that it k is an uncountable cardinal, then a rational vector space of dimension k is the same thing as a rational vector space of cardinality k?
IR] = 8% = IZ = INI; IR = 2 ⁸⁴ , = (P(IN)) (P(A) = power set of A)
[Q"] = [Q[by induction. If A = \$50 then A x A = \$50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ Q^{\omega} = \mathcal{H}_{o}$ (union of countrably many countable sets $Q^{\omega} = \mathcal{V}Q^{u}$ (soundatele).
For K λ infinite conditionals, $K + \lambda = K \lambda = \max \{K, \lambda\}$
i.e. if A, B are infinite sets then IAUBI = [ALIB] = [AKB] = max [IAI, IBI]. This was AC (axion of choice). (And its equivalent to AC.) If K is an infinite cardinal and V is a rational vector space, then dim V = K =>7 [V]=K Proof Let B be a besis of V. Then (B ≤ V]
$V = \bigcup_{n=1}^{\infty} \bigcup_{v_1, \dots, v_n}^{v_n} \{v_1, \dots, v_n\} = \{a_i \vee_1 + \dots + a_n \vee_n : A_i \in \mathbb{O}\} \leq K_0$ $V = \bigcup_{n=1}^{\infty} \bigcup_{v_1, \dots, v_n}^{v_n} \{v_1, \dots, v_n\} = \{a_i \vee_1 + \dots + a_n \vee_n : A_i \in \mathbb{O}\} \leq K_0$ $The number of Choices of (V_{i_1, \dots, v_n}) \in \mathbb{B}^n i \leq \mathbb{B}^n = \mathbb{B}^n \mathbb{B}^{n-1} \times \mathbb{B} = \mathbb{K}^n \times \mathbb{B}^n \times \mathbb{K}^n \times \mathbb{B}^n$ $V = K_0 \cdot K = K.$

Fields

Let *F* be a set containing distinct elements called 0 and 1 (thus $0 \neq 1$). Suppose addition, subtraction, multiplication and division are defined for all elements of *F* (except division by 0 is not defined). Thus a + b, a - b, ab, $\frac{a}{d} \in F$ whenever $a, b, d \in F$ and $d \neq 0$. Define -a = 0 - a.

If the following properties are satisfied by *all* elements $a, b, c, d \in F$ with $d \neq 0$, then F is a field.

a + b = b + a	a + (b + c) = (a + b) + c	ab = ba
a + 0 = a	a(bc) = (ab)c	1a = a
a + (-a) = 0	a(b+c) = ab + ac	$\frac{a}{d}d = a$
a + (-b) = a - b		

A Sield F has characteristic p if 1+1+1+...+1 = 0. (This requires p to be prime) IF 1+1+1+1+(+1=0 then (1+1+1)(1+1)=0. If there is no such p then f has characteristic zero.

The theory of rational rector spaces is uncontably categorical but not constably categorial

IF we arcions	want	to force	e our le only	field with	to he haracter	istic ter	octeristic sield	= 5, sey s, then	add add	an agaiom infinitely v	1+1+1+1+E0 Namy
	1+1 ‡0 1+1+1 ≠							· · · · · ·			
	·{+[+]+] -{+[+]+}	(
The comp zero ha	etr. Per nu	bers is	-the	mique	lup to	isonorphi	in) alge	braically	closed	field of	characteristic
The the	ory of	algebraic	ally I	osed f	elds of	characteri	stic zero	is num	contably	categori	cel.
(Not ce First ord for each (Vao)(V	entelly of	ategorical ms for	?) "algeb	raically	closed	· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · ·	· · · · ·	· · · · · · ·	· · · · · ·
for each	n71	we add	a_{m} axi	θ_m of -	the for + az	~~ + q = 0)	· · · ·	· · · · · ·	· · · · ·	· · · · · · ·	· · · · ·
		< K = 0					· · · ·	· · · · · ·	· · · ·	· · · · · · ·	· · · · · ·
	= in			· · · ·		· · · · · ·	· · · ·	· · · · · ·	· · · ·	· · · · · · ·	· · · · ·
	· · · ·	· · · · ·								· · · · · · ·	
										· · · · · · ·	

Given a field \overline{F}_{1} the <u>algebraic</u> closure of \overline{F} is the smallest extension field $\overline{F} \supseteq \overline{F}_{1}$ which is algebraically closed, i.e. containing roots of all polynomials in $\overline{F}[x]$. eg. $\overline{R} = \mathbb{C}_{1}$, $\overline{\mathbb{C}} = \mathbb{C}_{1}$, $\overline{\mathbb{Q}} = \{algebraic numbers\} \in \mathbb{C}$, $ \overline{\mathbb{Q}} = \Re_{0}$
which is a gebraically closed, i.e. containing roots at all polynomials in FIXI.
eg. $\mathbb{R} = \mathbb{C}$, $\overline{\mathbb{C}} = \mathbb{C}$, $\overline{\mathbb{Q}} = \{a_{gebraic}, a_{cumbers}\} \subset \mathbb{C}$ $ \overline{\mathbb{Q}} = \Re_{g}$
$\mathbb{F}_{p} = \{0, 1, 2, \cdots, p^{-r}\}, (\overline{\mathbb{F}}_{p}) = \Re_{p}, (\overline{\mathbb{F}}_$
FIELD = { field axians} (finite set of axioms for all fields)
ALG_CLOS = { a, a, a,} a, is a statement in the language of fields that says every poly. of degree a has a root.
every poly of degree a has a root.
eq. x_2 : $(4a)(4b)(4c)(3x)(x^3 + ax^2 + bx + c = 0)$ here x is an abbreviation for
eg. x_{5} : $(\frac{1}{4})(\frac{1}{6})(\frac{1}{6})(\frac{1}{2})(\frac{1}{3}+\frac{1}{4}\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=0)$ ACF = FIELD U ALG_CLOS is a set of axioms for algebraically closed fields. $C \models ACF$, $\overline{E}_{7} \models ACF$, $\overline{Q} \models ACF$
$C \models ACF, E \models ACF, Q \models ACF$
The statement HI+I+I+I+I+I+I=0 is true in The but not in C or Q.
The theory of algebraically closed fields is not complete ("complete" = "model complete").
of: 1+ (+ + (= 0 e a) set of axioms for
ACF _p = ACF U { θ_p } is the theory of $\overline{F_p}$ i.e. Th $(\overline{F_p}) = { all statements in first order find theory which had in \overline{F_p}$
$ACF_p = ACF \cup \{\theta_p\}$ is the theory of \overline{H}_p i.e. $Th(\overline{H}_p) = \{ \text{ all statements in first order } field theory which hold in \overline{H}_p \}.$
ACF = ACF $\cup \{ \neg \theta_2, \neg \theta_3, \neg \theta_4, \neg \theta_4, \dots \}$ is a set of axisms for the theory of algebraically closed fields of characteristic zero eq. \mathbb{C} , $\overline{\mathbb{Q}}$ so $Th(\mathbb{C}) = Th(\overline{\mathbb{Q}}) = Th(ACF_0)$ is complete.

For Every statement & in the first order theory of fields is either provable or disprovable fram ACF_{e} i.e. $ACF_{e} + \frac{2}{3} = ACF_{e} - \frac{2}{3}$. Ax. Grothendiek Therem let f: C" - C" be a polynomial map i.e. $f(x_1, \dots, x_n) = (f_1(x_1, \dots, x_n), \dots, f_n(x_1, \dots, x_n)) \text{ where } f_1(x_1, \dots, x_n) \in \mathbb{C}[x_1, \dots, x_n].$ If is one-to-one then is onto. $\frac{Proof}{as} \quad \text{Take one instance } f(x,y) = (ax^2 + bxy + cy^2 + dx + ey + q, hx^2 + jxy + ky^2 + lx + my + n)}{as} \quad \text{an example. Consider the stelement } \theta \quad \text{in first-order field theory given lay}}{(\forall x_i)(\forall y_i)(\forall x_2)(\forall y_2)(\forall x_2)(\forall y_2))}$ if is one to one " fis onto" We unst prove $C \models \theta$. If not then $C \models \tau \theta$ and $ACF_0 \vdash (\tau \theta)$. Consider a pool of $\tau \theta$ from ACF. Such a proof uses only finitely many of the excions $\tau \theta$. There is some prime p for which $-\theta_p$ is not used in the proof of $\tau \theta$. So $\overline{F_p}$ ($\overline{F_p} \models \theta_p$) sotisfies $\tau \theta$ ($\overline{F_p} \models \tau \theta$). However, $\overline{F_p} \neq \theta$. Why? Given $a, b, c, ..., a \in \overline{F_p} = \bigcup_{r=1}^{r} F_{pr}$ so pick r so that $a, b, ..., a \in \overline{F_p}$. If defines a polynomial map $\overline{F_r} \neq \overline{F_pr}$ which is one-to-one and therefore onto. Now IF, satisfies $\theta \land (\theta)$, a contradiction.

•		D	<u>ś</u> -	Va		<u>lt</u>	1	és	F		as	su	re	s S	LLA	-#	hat	Th	(A	CF,	$\mathbf{)}$		Ŝ	C	m	ø	ti	•	7	tii	s. de	us ls	25		th and	2 	th the	20 70 Fl	y	ha	. e 25	no Z	fi	rite	2
•	•		- - -	t	-	•	•	E	2-2	g	Ł	oś	i N	•	Re	be	rt		aug	glit	;	(95	4))	•	•	•		•••				•		•								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	proc
																																	• •							• •				• •	• •
		•	•	• •					• •						• •				•					•	• •				•	• •			• •				• •			• •				• •	
•		•							• •														•	•	• •					• •		•	• •			•	• •			• •	•			• •	
	•	•		• •	•				• •			•			•			•	•				•	•			•		•				• •			•	• •			• •	•			• •	
		•	•	• •	•			•	• •	•				•	•		•		•		•		•	•	• •			•	•	• •		•	• •			•	• •	•		• •			•	• •	•
		•	•	• •			•		• •					•	•		•		•		•		•	•	• •				•	• •		•	• •				• •			• •				• •	
	•	•																						•								•	• •			•	• •	•		• •				• •	
		•						•											•			•	•	•						• •			• •				• •			• •				• •	
		•	•					•	• •					•	• •		•				•		•	•						• •		•	• •				• •						•	• •	
																								•																• •					
		•	•	• •					• •						• •				•					•	• •				•	• •			• •				• •			• •				• •	
•		•	•						• •														•	•	• •					• •		•	• •			•	• •			• •	•			• •	
	•	•		• •	•				• •			•			•			•	•				•	•			•		•				• •			•	• •			• •	•			• •	
		•	•	• •	•			•	• •	•				•	•		•		•		•		•	•	• •			•	•	• •		•	• •			•	• •	•		• •			•	• •	•
		•	•	• •	•		•	•	• •	•				•	•		•		•				•	•	• •				•	• •		•	• •	•		•	• •			• •				• •	
•	•														• •			•								•							• •			•	• •			• •				• •	
			•	• •		•	•		• •		•								•					•						• •		•	• •	•			• •			• •				• •	