

Los-Vanglet Test assures me that Th(ACF) is complete. This uses: the theory has no finite
models; and the theory is 2⁹⁶ categorial L t Jerzy tos, Robert Vaught (1954) C-words Logic Algebre $closed \nvert \nvert$ > (modal) complète en (Caucher) comptete & Ves compact de continuous No convergent Let L be a language and let X be the collection of all L-structures.
For any set of sentences Σ over L, let K_{Σ} = set of of L-structures satisfying all the sentences in Σ
Then X is a top space with K_{Σ} as it E_4 . $K = \mathbb{Q}[\sqrt{6}z] = \{a+b\sqrt{2} : a,b \in \mathbb{Q}\}$ has two field automorphisms, $\sqrt{2}$ (arbor $\sqrt{2}$ arbor, $T(a+b\sqrt{2}) = a-b\sqrt{2}$. $E=\frac{1}{2}\sum_{k=1}^{N}e^{-\frac{1}{2}k}$

Indiscarnibles ... coming soon Here we consider only points, lines and their Axians for projective plane geometry: Objects: points and lines idences.
Relations: $P(.)$ L(i), $TC, .$
Relations: $P(.)$ L(i), $TC, .$
imany relation symbols relation symbols relation symbols A xions: (i)
Anytwo distinct points are on a unique line.
($\forall x$) ($\forall y$) ($P(x) \wedge P(y) \wedge \neg (x=q) \rightarrow (\exists z)(1(x,z))$ Aay two distinct points are on a unique line.
(Vx)(Yy)(PG)xPly) x "(x=g) -> (Jz)(I(x,z) x I(yxz) x (Yw)(I(x,w)xI(yw) cin) distinct lines meet in a unique point. (1005 favores)) (4)

we on a union
 f in a union
 f in a union

which we $W(x) (Yy) (P(x) \wedge P(y) \wedge \neg (x=y) \rightarrow (\exists z)(1(x,z) \wedge 1(y,z) \wedge (\forall w)(1(x,w))$

civic mondegeneracy axion a meet in a unique point.

Fluere exist at least form of them collinear. Models? There are some orders (sizes) for which models are unique up to isomorphism Faite projective planes: Infinite planes:
n2+n+1 points / lines For every infinite
n+1 points / line aerdinal K, there F. P. June 11 ์
ว t points tanto projective planes. Literature planes! L POILLY R+n+1 points/line int points lines are money projected
n+1 lines point are money projected
n = order of the plane candinality κ). 3 points/line n = order of the plane cardinality κ). $3¹$ lines/point

Cet A be a set of first order sentences over a language L (i.e. e theory) and let $M \models A$ (a model of A). A set of indiscernibles S CM such that for every distinct $s_{\epsilon},...,s_{k}\in S$ and $t_{i},...,t_{k}\in S$ and every propositional function $\phi(x_1, ..., x_k)$, $\phi(s_1, ..., s_k)$ RP $\phi(t_1, ..., t_k)$. Eg. let A be the axioms of field theory, $C = A$ let S bestiant $C \subseteq S$ and
algobraically independent subset of C. This means that for all similar $C \subseteq S$ and eg. Et ?, Le? There are alg. ind. subset of C of unconstable size! IS ET, e3 alg. indep.? Aug set SSC which is alg. indep. is a set of indiscernibles. Let d be the axioms of graph theory. Consider a graph $F = 4$ that books like
 $F = 4$ that books like
 K_{α} (F_{α}) K_{α} (K_{α}) K_{α} (K_{α}) K_{α}) K_{α} (i.e. α), α , α is α in the cardi

Proj. Plane bipartite groeph and shortest cycles have ang

~ A set of order indiscernibles in M is an ordered set $S = \{S_i : i \in \mathbb{Q}\}$ A set of order judiscervables in M is an ordered set $S = \{s_i : S_{i+1} \leq \cdots \leq t_k \mid n \in \mathbb{Q} \}$ and $\phi(x_i, ..., x_k)$ is a \mathbf{p} formula over L τ_{τ} < ... < $t_{\mathbf{k}}$ in \mathbb{Q}
u, < ... < $t_{\mathbf{k}}$ in \mathbb{Q} $M = (\phi(s_{t_1},...,s_{t_k}) \Leftrightarrow \phi(s_{t_1},...,s_{t_k}))$. N_{bol} $L =$ $u_{1} < ... < u_{k}$
= (<), M = (Q, <), S = Theorem let A he a collection S is a set of order indiscernibles. in M is an ordered set $S = \{s_i : i \in \mathbb{Q}\}$

< t_k in \mathbb{Q} and $\phi(x, ..., x_k)$ is a pap formula over
 $S = \mathbb{Q}$,
 \downarrow discernibles.
 \downarrow for \downarrow and \downarrow $M = (\phi(s_{t_1}, ..., s_k) \Leftrightarrow \phi(s_{t_i}, ..., s_{t_k})$
 \downarrow for M and \downarrow sentences over a $u \leq ... \leq n$
 $\L = \left(\leq\right)$, $M = (0, 1)$, $S = 0$, we have $M = \left(\phi(\epsilon_{t_1}, \ldots, \epsilon_1) \Leftrightarrow \phi(\epsilon_{t_{i-1}}, \epsilon_{t_i})\right)$
 S is a set of order indiscensibles.

Theorem let A he a collection of

sentences over a knowned $A = 0$, then an infinite model $M = A$, then A las Theorem let a he a collection of
Theorem let a he a collection of
sentences over a hygnoge z . If A here
an infinite model $M = A$, then A las
an infinite model with a set of
order indiscernibles $S \subseteq M$, $S = \{s_{\xi}: t \in \$ and $\phi(x, ..., x)$ is a prop-
and $\phi(x, ..., x)$ is a prop-
we have $M \vDash (\phi(\xi_{t_1}, ..., \xi_{t_k}) \le$
 $\begin{pmatrix} 1 & 3 & 9 \\ 1 & 3 & 1 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix}$
 $\Rightarrow \sum_{r=1}^{12}$
 $\Rightarrow \sum_{r=$ $\begin{array}{r} \begin{array}{c} 2 \\ 1 \end{array} \\ \begin{array}{c} 2 \end{array} \\ \begin{array}{c} 1 \end{array} \\ \begin{array}{c} 2 \end{array} \\ \begin{array}{c} 2 \end{array} \\ \begin{array}{c} 1 \end{array} \\ \begin{array}{c} 2 \end{array} \\$ and get moders of a with sets of order indisceraintes of the mesized order type.)
Remark: The Upward Lowenheim. Skolem Theorem: says: if A has an infinite model M indisc
Remain Kemark: the upward watching sperm measured the

\n
$$
|A| \leq |B|
$$
 iff there is a bijection: $A \rightarrow B$.
\n $|A| \leq |B|$ iff then $A \rightarrow B$.
\n $|A| \leq |B|$ iff then $A \rightarrow B$.
\n $|A| \leq |B|$ iff then $A \rightarrow B$.
\n $|B| \leq |B|$ iff then $A \rightarrow B$, $N_0 = \{0, 1, 2, 3, \dots\} = 0$. The map $x \mapsto \pi$, $N_0 \mapsto N_0$ is injective so $|N_0| \leq |N_0|$. But $|N_0| \leq |N_0|$ since $x \mapsto 0$. Let $|N_0| \leq |N_0|$ is a bijection: $N_0 \rightarrow N_0$.
\n $|N_0| \leq |N_0| \leq |Q| = |Z| = |Q_0| = \aleph_0$ (n=123.)
\n $|N_0| \leq |R_1|$. And $|S| \leq |R_1|$. Cantov should then $|S| \leq |S_0|$) where $|S| \leq |S_0|$. Then $|S_0| \leq |R_1|$. Cantov should then $|S| \leq |S_0|$ will be a unique of $|S_0|$.
\n $|S_0| \leq |S_0|$. Then $|S_0| \geq |S_0|$, $|S_0| \leq |S_0|$.
\n $|S_0| \leq |S_0|$. Then $|S_0| \leq |S_0|$, $|S_0| \leq |S_0|$.
\n $|S_0| \leq |S_0|$ and $|S_0| \leq |S_0|$.
\n $|S_0| \leq |S_0|$, we have $|R| \geq |S_0|$.
\n $|S_0| \geq |S_0|$.

By ZFC, every set Scan be well-ordered. There is an order relation "I" on S such that By EFC, every set can be used · if ask and began than $a=b$. (ask means a b or $a=b$) · Every nonempty subset of S has a a asb but at b
least element. If $A \subseteq S$, $A \neq \emptyset$ then there exists at with $a \triangleleft x$ for all $x \in A$. In other words, there is no infinite decreasing sequence $a, b, a, b, a, b, a, b, a, b$ By ZFC, every set Scan be
if ask and bsd c then a
if ask and bsd then
Every nonempty subst
least dement. If A
In other words, there
The Arian of Symmetry ... in A. The Axiom of Symmetry AS: x shoots at positions $A_x \subset \mathbb{R}$, $|A_x| \leq \aleph_0$.
 $x \notin A_x$ Novembry subset of S has a as b but at b
demant. If $A \subseteq S$, $A \neq 0$ then there exists a EA with as a fe
then words, there is no intitie decreasing segmence a, b, a, b, a, b
write of Symmetry AS: a shoots at positions $A_x \subseteq R$ $\frac{1}{\sqrt{2}}$ ⑭ 8 R $AS:$ There exist xfy in R such that $x \notin A_y$, $y \notin A_x$. (Neither of x,y hits the other.) As is very easily believable. As is equivalent to iCH.

Freiling c.1986 introduced AS. But this was actually due to Sierpinski. $AS = AS$ AS, says: Given any assignment $\{x, y\} \mapsto A_{x,y} \subseteq R$ (for $x \neq y$ in R) there exist three distinct $x,y,z \in \mathbb{R}$ such that mone of them are dust by the
other two i.e. $x \notin A_{y,z}$ $y \notin A_{x,z}$ AS_2 is equivalent to $|R| \geqslant S_3$. $\cdot \cdot \cdot \mathbb{R}$ = \mathcal{A}_4