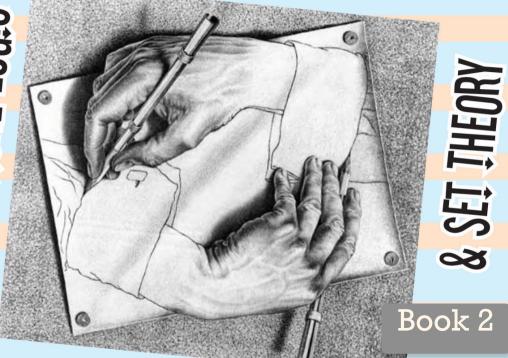
MATHEMATECAL LOGEC



105- Vaught Test assures in that Th(ACFo) is complete. This uses: the theory has no finite models; and the theory is 2 societarial L t Jerzy Loś, Robert Vaught (1954) C- words Logic Algebre. (Cauchy) complete & No -, (model) complete of compact of convergent yes compact & comp Let L be a language and let X be the collection of all L-structures. For any set of sentences Σ over L, let $K_{\Sigma} = Sol$ of of L-structures socistying all the sentences in Σ . Then X is a top. Space with K_{Σ} as its basic closed set.

This space is (topologically) compact, $S_{\Sigma}(K_{\Sigma}) = S_{\Sigma}(K_{\Sigma}) = S_{\Sigma}(K_{\Sigma})$. Eg. $K=O[6]=\{a+b=1: a,b\in O\}$ has two field auxomorphisms, i(a+b)=a+b=1, T(a+b)=a-b=1.

C has uncountably many automorphisms but only two of them are continuous. $\mathbb{C} \subset \mathbb{C}[x] \subset \mathbb{C}(x) = K \subset K$ The ring C[x] has automorphisms f(x) -> f(x+a) $K = C(x) = \begin{cases} \frac{f(x)}{g(x)} : f(x), g(x) \in C(x) \end{cases}$ is a field extension of C and it's not alg. closed. K[t] has irreducible polys eg. t-x e K[t] K is an alg. closed field of char. O, |K| = 280= |C| But there is only one alg. closed field of char. O for each uncomtable cardinality (the theory of ACF, is uncountably categorical) so $K \cong \mathbb{C}$. K has lots of automorphisms i.e. (has lots of automorphisms.

R has only one automorphism, the identity I(a) = a.

Axioms for R?

Field axioms

1 stroduce a new binary relation symbol < (a < b is a shorthand-for R(a,b))and axioms $(\forall a)(\forall b)[(a < b) \lor (a = b) \lor (b < a)) \land \neg[(a < b) \land (b < a)] \land \neg[(a < b) \land (a = b)] \land \neg[(a < b) \land (a = b)] \land \neg[(a < b) \land (a < b)] \land \neg[(a <$

(4ax 4b)(4c) ((a<b) -> (atc < b+c) a (c>o) -> (ac < bc)]) PR is the migre ordered field which is (Cauchy)-complete and having to as a dense subfield. But we cannot state "Cauchy complete" in first order theory of fields. How much of the theory of R can be captured in first order logic? Ordered field axions (∀a)(a+0 → a>0) (∀a)(a>0 → (∃b)(b=a)) . Every polynomial f(x) ∈ R[x] of odd degree has a root. Eg. for degree 3 (4a) (4b) (4c) (3x) (x3+ax2+bx+c=0) The first order theory of R is complete. However the theory is not K-categorical for any cardinality K. (No models for K finite; more than one for each infinite K.) Eg. for K= Ko = Q NR For K= 2 " : IR; hypermals TR Any model of RCF is a real closed field.

Every real closed field is elementarily equivalent to R

R and C are elementarily equivalent. (i.e. has the same first order theory).

Emil Artin (1927) proved the Hilbert 17th problem using mathematical logic. Hilbert's 17th Problem such that $f \approx 0$ (i.e. $f(x_1,...,x_n) \approx 0$ for all $x_1,...,x_n \in \mathbb{R}$). Let $f(x_1,...,x_n) \in \mathbb{R}[x_1,...,x_n]$. Is it necessary then $f = s_1^2 + ... + s_k^2$ for some rotional functions $s_1(x_1,...,x_n) \in \mathbb{R}(x_1,...,x_n)$? (Pristen: $k \leq 2^n$) Motekin's example: n=2. f(x,y) = 1-3xy2+x2y4+x4y270 This is not expressible as a sum of Squares of poly's but $f(x,y) = \left[\frac{x^2y(x^2+y^2-2)}{x^2+y^2}\right]^2 + \left[\frac{xy^2(x^2+y^2-2)}{x^2+y^2}\right]^2 + \left[\frac{x^2-y^2}{x^2+y^2}\right]^2 + \left[\frac{x^2-y^2}{x^2+y^2}\right]^2$ Note: $\frac{1 + x^{\frac{3}{4}} + x^{\frac{3}{4}}}{2} \ge (1 + x^{\frac{3}{4}} + x^{\frac{3}{4}})^{\frac{3}{3}} = x^{\frac{3}{4}}$ by the arithmetic-grometric mean inequality so f(x,y) ≥ 0 Ser all xy. If $f = s_1^2 + \cdots + s_k^2$ for some $s_i(x,y) \in \mathbb{R}[x,y]$ then deg $s_i \leq 3$, so $s_i(x,y)$ may have terms 1, x, y, x, x9, y, x3, x3, x2, x63, yx Si(x,y) = a; + b; x+ c; y + d; xy+ e; x2+ f; y2 Si = 2d:xy +... In R. the positive elements are squares. (Not true in 10) Consequence: |Aut R| = 1. If $\phi \in Aut R$ i.e. ϕ : $R \rightarrow R$ is bijective and $\phi(a+b) = \phi(a) + \phi(b)$ for all then $\phi(a) = a$ for all $e \in R$. Why? $\phi(a^2) = \phi(a)^2$ so $\phi(a) > 0$ iff a > 0. $\phi(ab) = \phi(a) \phi(b)$ about

So $\phi(a) < \phi(b) \iff \alpha < b$. \$(0)=0 \$(2) = \$(H1) = \$(1) + \$(() = 1+1=2 €7 \$(6) -\$(a) >0 €7 \$(b-a) >0 $\phi(a) = a$ for all $a \in \mathbb{Q}$ $\phi(a) = a$ for all $a \in \mathbb{R}$. 6-9 70 € a< b. Compare: O[VZ] is also an ordered field but it has nontrivial automorphism of (a+bir) = a-bir for all a, b∈ 0. Hilbert's 17th problem is true for n=1: every $f(x) \in R[x]$ with $f(x) \ge 0$ for all x satisfies $f(x) = g(x)^2 + h(x)^2$ for some g(x), $h(x) \in R[x]$. Why? Factor $f(x) = \lambda \prod_{i=1}^{n} (x-r_i)^2 \cdot \prod_{j=1}^{n} (x-s_i)^2 + t_i^2$ where $\lambda \ge 0$, $\lambda = a^2$ (a+62)(c+d2) = (ac-bd)+(ad+bc)2 Proof of Hilbert's 17th Roblam (Artin; Serre) let f=f(x,...,xn) ∈ P(x,...,xn]. Suppose f is not a sum of squares of rational functions; we must Show f(a, ..., an) < 0 - For some a, ..., an E R. F = R(x,...,xa) = field of radional functions in xr..., xa with real coefficients. T= { sums of squares of rational functions in f}.
= { s,+...+s, : s, ∈ F}. Note: T+T ⊆T, TT⊆T, a ∈T for all a∈ F.

T defines a preorder on F, namely for $g,h \in F$, we say $g \le h$ iff $h - g \in T$. \leq is transitive but it's a partial order in general. It's an order IP TU(-T) = F and Tn(-T) = 90} order) -T = {-g : g e T} We are assuming f & T. Among all preorders containing T but not containing f, choose a maximal preorder P using Zorn's lemma.

Let ? Pa: « e A? be a collection of preordless on F with Pa 2T, f & Pa. (i.e. for every or $\beta \in A$, either $P_{\alpha} \subseteq P_{\beta}$ or $P_{\beta} \subseteq P_{\alpha}$)

(i.e. for every or $\beta \in A$, either $P_{\alpha} \subseteq P_{\beta}$ or $P_{\beta} \subseteq P_{\alpha}$)

(i.e. for every or $\beta \in A$, either $P_{\alpha} \subseteq P_{\beta}$ or $P_{\beta} \subseteq P_{\alpha}$)

Then $P = \bigcup_{\alpha \in A} P_{\alpha}$ is an upper bound for the claim i.e. $P_{\alpha} \subseteq P_{\alpha}$ for all $\alpha \in A$. Then P > a preorder $(P_+P \subseteq P_-P) \subseteq P_-$ and $P \ge T_ f \notin P_-$. By Form's Lamma there exists a maximal preorder P as above. (i) Show 1 & P. If TEP then f= (1+f) + (-1) (1-f) EP, a contradiction. cii) Show -f∈P. Suppose -f∉P and consider P=P-Pf={a-bf: a,b∈P} which is a poeorder. $P + P = \{(a, -b, f) + (a_2 - b_2 f) = (a_1 + a_2) - (b_1 + b_2) f : a_1, b_1 \in P\} \subseteq P$ (a,-b,f)(4,-b,f) = $(a_1a_2 + f^2b_1b_2) - (a_1b_2+a_2b_1)f \in \tilde{P}$ By maximality of \tilde{P} , $f \in \tilde{P}$. f = a - bf, some $a, b \in P$. (146) $f = a \Rightarrow f = \frac{a}{1+b} = (14b)a \cdot \frac{1}{(14b)^2}$

(iii) Given gef, show geP or -g∈P.

Assume g∉P; show -g∈P. WLOG g≠0. Consider $\tilde{P} = P + Pg$. As in (ii) \tilde{P} is a preorder, $\tilde{P} \geq P$, $\tilde{P} \geq P$ since $g \notin P$, $g \in \tilde{P}$. By maximality of P, we must have $f \in \tilde{P}$ so f = a + bg, some $a, b \in P$. $-bq=a-f \Rightarrow -g=\frac{a-t}{b}=b\cdot(a-f)\cdot(\frac{1}{b})^2\in P$ (iv) Pn(-P) = {0} If g+0, g e P, -g P then -(- g. (-g). (1) = P, contrary to is. (F, \leq) is an ordered field where $a \leq b \iff b-a \in P$ It's an extension of (R, S) By the Tarski Transfer Principle, if (r.,..., r.) sodisties a statement in first order theory of ordered fields, then there is (a.,..., a.) & R" realizing this statement. Here -feP ie. f<0 i.e. f(x1,...,xn) <0 & f(a1,...,qn) <0 for some 9,..., 9, €R.

Indiscernibles ... coming soon Here we consider only points, lines and their Axioms for projective plane geometry: incidences. Objects: points and lines $(\forall \pi)(P(x) \leftrightarrow (\neg L(\pi)))$ Relations: P() L(), I(,) (4x)(4y) (I(xy) -> (7(x) co L(y))) Axions: (i) Aay two distinct points are on a unique line. (∀x)(∀y)(P(x) ∧ P(y) ∧ ¬(x=y) → (∃z)(I(x,z) ∧ I(y,z) ∧ (∀w)(I(x,w) ∧ I(y,w) (ii) Auy two distinct lines meet in a unique point. -7 (w=2))) (iii) mondegeneracy axion foints with no three of them collinear. which models are unique up to isomerphism Models? There are some orders (sizes) for Infinite planes Finite projective planes: n2+n+1 points / lines 7 points 7 lines 3 points/line 3 lines/point not points (lines for every infinite not points / line are many proj planes not lines / point of order K (with n = order of the plane cardinality ().

Does there exist an infinite projective plane which is 40-categorical is. its theory has a unique countable model? des (i).... Any two points are on at most line

(ii) P IF P is not on I then there is a

unique Q on I joined to P. Generalized Quadranglos (m) nondegeneracy. 23=3 In every case the

Can $3<\infty$, $t=\infty$?

If S=2 then $t\leq 4$ (easy).

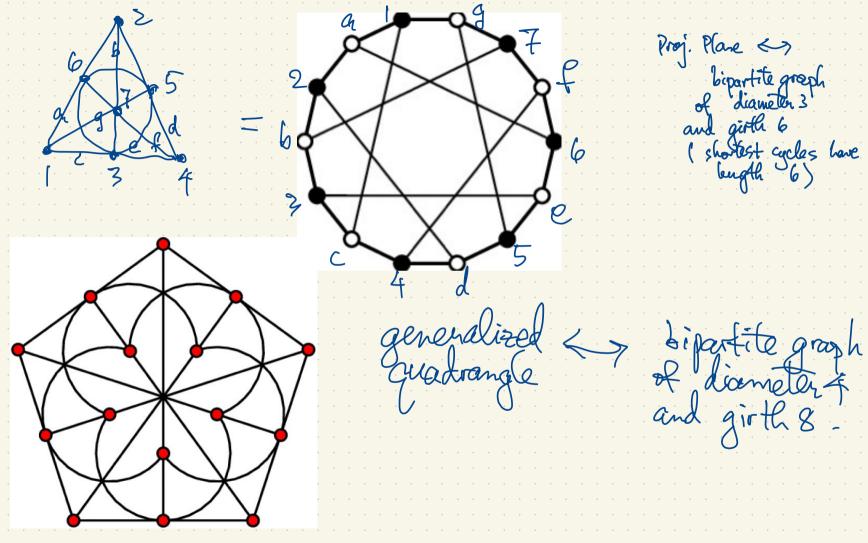
If S=3 then $t\leq 9$ (4 pages)

If S=4 then $t\leq 16$ (Cherlin)

(et A he a set of first order sentences over a language L (i.e. a theory) and let M ⊨ A (a model of A). A set of indiscernibles $S \subseteq M$ such that for every distinct s, ..., $s_n \in S$ and $t_1, ..., t_k \in S$ and every propositional function $\phi(x_1,...,x_k)$, $\phi(s_1,...,s_k)$ AP $\phi(t_1,...,t_k)$. Eq. let A be the axioms of field theory, $C \neq A$. Let S be amy algebraically independent subset of C. This means that for all similar and nonzero $P(x_1, \dots, x_k) \in \mathbb{Q}[x_1, \dots, x_k]$ then $P(x_1, \dots, x_k) \neq 0$. eg. {17}, {e}. There are alg. ind. subset of C of uncountable size! Is {T, e} alg. indep.? Any set $S \subseteq \mathbb{C}$ which is alg. indep. is a set of indiscernibles. Let it be the axioms of graph theory. Consider a graph $\Gamma \vDash A$ that books like

When $\alpha_1, ..., \alpha_5$ are infinite cardinals

Rick $s_i \in K_{N_1}, ..., s_s \in K_{N_2}$ Rus K_{N_3} Rus K_{N_4} Rus K_{N_5} Rus



Let L be a language and A a set of sentences over L. Let $M \models A$ be an L-structure. A subset $S \subseteq M$ is a set of indiscornibles if for every $k \not\equiv 1$ and $a_1, \dots, a_k \in S$ distinct, also any $\phi(\kappa_1, \dots, \kappa_m)$ formula over L, $M \models \phi(a_1, \dots, a_k)$ $\phi(\kappa_1, \dots, \kappa_m)$ $\phi(\kappa_$ ME \$(a,...,a,) &> \$(b.,...,b) Eg. L = (0, +, 0, 1) = language of rings with identity 1<math>L = axioms of field theoryM = (Scany algebraically independent set (i.e. for a, ..., a & S distinct, $f(x_1,...,x_k) \in \mathbb{Q}[x_1,...,x_k]$ and $f(a_1,...,a_k) \neq 0$. Let $s,t \in S$. Eq. $\phi(x,y): x^2 + xy + y^2 = 0$. For all s,teS (s+t), \$(s,t) is false. 2 (xy): (4u) (yz) (ux+ vy=1). y(s,t) is fone for all stt in S Deuse Linear Order Without Endpoints S=(<), A= axioms of DLO without endpoints, M=(Q,<) usual ordering on Q. $M \neq A$ (the unique contable model up to isomorphism). This structure has no indiscernify sets S with |S| > 1. If $S \neq C$ with $C \neq C$ with Ceq. s< t → (t<s)

A set of order indiscernibles in M is an ordered set S= { si t = Q} Such that whenever t, < ... < tk in Q and \$ (x,..., x,) is a prop. formula over L we have M = (φ(s_{t1},..., s_t) ←> φ(s_{u1},..., s_{u2}). Now Z= (<), M= (Q, <), S= Q. S is a set of order indiscernibles. $1399 \rightarrow \{247993$ Theorem Let & he a collection of sentences over a language L. If A loss an infinite model M= A, then A loss an infinite under with a set of order indiscernibles S ⊆ M, S = {s; t∈Q}. (Here we have chosen S having order type (R, <) but you can choose any total order you want and get models of A with sets of order indiscernibles of the desired order type.) Remark: The Upward lowenheim. Skolem Theorem says:
then it also has models of every cardinality > 101.