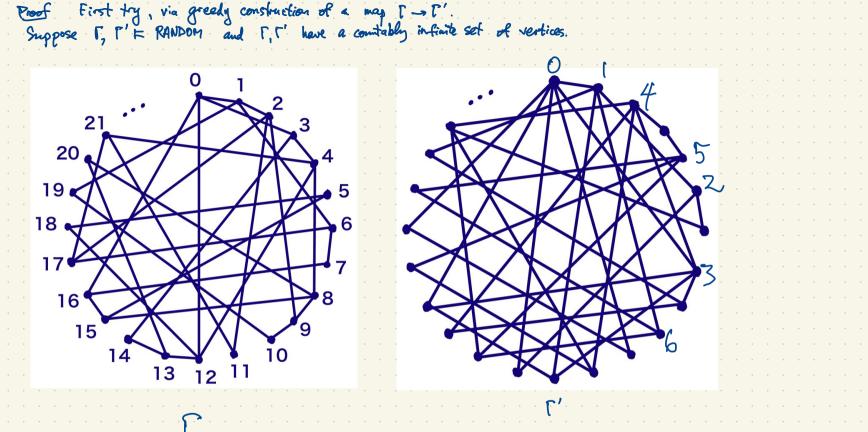
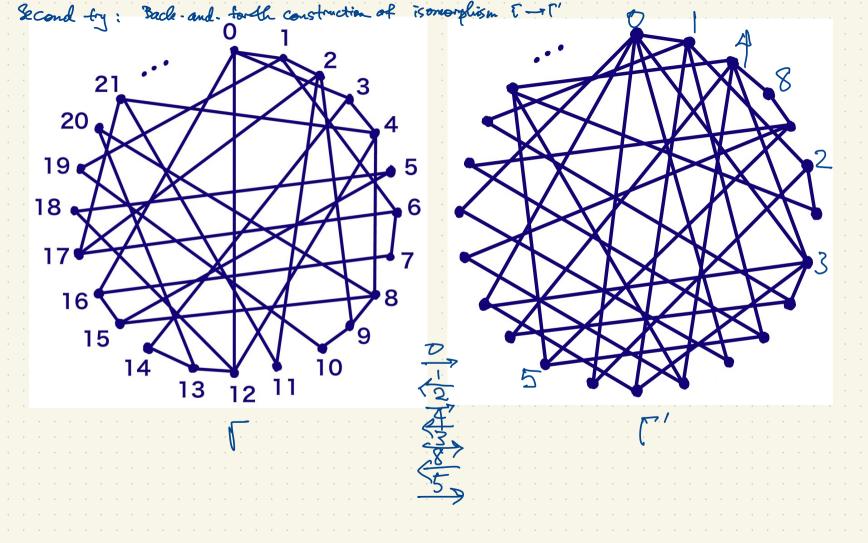


Group Theory: an example of a first-order axiomatic system
An informal proof in group theory Theorem If G is a (multiplicative) group of exponent2, then G is deelian.
Theorem If G is a (multiplicative) group of exponent 2, then G is dealion.
(G has exponent n if g"=1 for all g & G.)
gives a gbabb = a1b, i.e. ba = ab. Axcions of Group Theory: i.e. $\mu(n(x,y),z) = \mu(x,\mu(y,z))$ Special symbols for first order logic: \exists , \forall , parenthes, n, v ,
$D: (\forall x) ((x + 1 = x) \land (1 + x = x))$
SSOC: $(\forall x)(\forall y)(\forall z)$ $((x + y) + z = x + (y + z))$ Symbols for functions: $*,$ right means $M(x, y)$
D: $(\forall x) ((x + 1 = x) \land (1 + x = x))$ SSOC: $(\forall x) (\forall y) (\forall z) ((x + y) + z = x + (y + z))$ INV: $(\forall x) (\exists y) ((x + y = 1) \land (y + x = 1))$ Symbols for relations: =
We happen to know some groups including C. (cyclic group of order m), S. (symmetric group of degree m), GROUGS = {ID, ASSOC, INV} = {(YX)(GX*I)=,} (fle set consisting of our three axions of group theory) S; is a group, i.e. S; E GROUPS (S; is a model of GROUPS) ABEL: (YX)(Yy) (X*Y = y*X) ABEL: (YX)(Yy) (X*Y = y*X) ABEL: GPS = GROUPS U {ABEL 3. S; is a non-abalian group; S; # ABEL; S; # ABEL-GPS. A structure has an underlying set of elements, together with an interpretation of all the symbols for constant, functions, and relations.

How do we rewrite our informal proof (a	bore) as a formal proof in f	erst only logic ?	
Z = GROUPS V } EXP25 where EXP2: ABEL is a theorem in the theory of g A theorem is a sequence of stops ZH Et ZH	rougs of exponent 2, i.e. St	- ABEL	
A theorem is a sequence of steps 5H	in which every step f	ollows from previou	s steps by
	a statement in E	or an axiom of	first onnor logic,
	- The or a rule of infe	erence	
	This is a law of	(cumbralic) proof!	
Σ,	This is a formal	(Summer 1	
	Since EXP2 E E		
An outline of a formal proof: ZH EXP2	since $EXP2 \in \mathbb{Z}$	p. 86	
$\Sigma \vdash (Exp)$	$\rightarrow (\forall a)(a*a=1)) (A4) $		
Z ⊢ (∀a)	ara = 1) Modus Tomas (1 9.00	
	(b*b=1)		
\mathbf{S} , $(\mathbf{v}_{\mathbf{v}})$	$(1) \left((a_{\pm}) + (a_{\pm}) \right) = 1$		
	$(\forall b)((a+b)*(a+b)=1)$		
	16) · (((a+ (laxb)+ (a*b)) = · a*1) ·		
)(46) (a*6 = 6*a)		
RICHARDS BORCHERDS	····································		
JOEL DAVID HAMKINS	×≠y ~~		
$ORD3 : (\exists x)(\exists y)(\exists z)(\forall g)((g=x) \vee (g=y))$) $(a=e)$) $\wedge (f(x=y)) \wedge (f(x=e))$)) < (7 (y= Z))	
Child Carley (19-3) (20)			
"Here and at most ill	the second se	at lost 3 element	.
were and all the formers	el eliminets mille a	- disprove that a	appeal arous is
ABEL & mappendent of 6KUMPS	(you cannot either prove t	This is borance (E CONVES
"there are at most the ABEL is independent of GROUPS abelian). GROUPS If ABEL	and OKUUPS IT ABEL.	G = ABEL but	SEGROUPS' SHABE
			-2-010-1101 -3.


In an arbitrary first-order theory, with axioms Z, a statement θ is independent of Z if
$2 \neq \theta$ and $2 \neq \tau \theta$:
277 € and 217 0: Soundness Theorem: IF Z+Ə then Ə holds in every model of Z i.e. MED whenever MEZ. Completeness Theorem: Converse holds: IF D holds in every model of Z, then it is provable from Z i.e. if MED whenever MEZ, then Z+D. Assume Z is consistent
I MED whenever MEZ. then Z+O.
Assume 2 is consistent So: θ is independent of 2 iff there are models of 2 in which θ holds, and models of θ in which
9. Kails.
S is consistent if we cannot prove a contradiction from Z is ZH (DA 70) for some D.
Z is consistent if we cannot prove a contradiction from Z , i.e. $Z + (\theta \wedge \neg \theta)$ for some θ . Equivalently, Z is consistent iff it has a model.
Eq. ABEL is independent of GROUPS.
GROUPS is consistent. COULDS 11 & OPPR3 is consistent since it has a model. In fact it has a unique model up to isomorphism:
the cyclic group C of order 3. The group Cz (or its theory) is categorical.
GROUPS is consistent. GROUPS U {ORDS} is consistent since it has a model. In fact it has a unique model up to isomorphism: the cyclic group C3 of order 3. The group C3 (or its theory) is <u>categorical</u> . GROUPS is not categorial. (There are models, but not a unique model.)
An alteractive to INV: $(\forall x)(\exists y)((x + y = 1) \land (y + x = 1))$ is to add a function symbol $\iota(\cdot)$ to the language namely $(\forall x)((x + \iota(x) = 1) \land (\iota(x) + x = 1))$ A theorem of Ξ is a statement that can be proved from Ξ . A proof is a sequence of statements such
Manuary (x, ((x, y) = x+y)) ((x, g) = x+y) A 10 - 0 S = that that an he proved from S A proof is a sequence of statements such
A theorem of Z is a statement that an he proved from Z. A proof is a sequence of statements such The theory of Z is Th(Z) = { statements provable from Z} = { theorems of Z}.


First order theory of graphs has no symbols for cons symbol R(·, ·), for the binary relation of adjacancy. Axions of graph theory: two arxioms to indicate that o IRREFL: (tx)(~(x~x))	tants or functions; there is only one relation
symbol K(:,), for the briding both in or adjacency.	Tolotia à que trè al inclarive
Axions of graph theory: Two axions to marcare that a	The reaction is some one and the reaction
$IRPEFL: (\forall x) (\neg (x \sim x))$	
SYM: $(\forall x)(\forall y)((x \sim y) \rightarrow (y \sim x))$	
GRAPHS = {IRREFL, SYM}	$M(R_{\mathfrak{s}},r_{\mathfrak{s}}) \xrightarrow{r} A \xrightarrow{r} \xrightarrow{r} \xrightarrow{r} A \xrightarrow{r} \mathsf$
= GRAPHS - F GRAPHS	"there are at loss of vertices" MAX7: (Jr.). (Jr.) (Vy) ((y=r.) v (y=r.) "There are at nost ? vertices"
To say that I has exactly 7 vertices, we could write	"There are at nost t vertices
$ORD7: (\exists x_1)(\exists x_2)\cdots (\exists x_n)](f(x_1-x_2)) \land \cdots \land f(x_n-x_n))) \land (\forall y$	$)((y=x_1)\vee(y=x_2)\vee\cdots\vee(y=x_7))]$
GRAPHS U & OBSF] : arcians for graphs with exactly ?	
Axioms for infinite graphs: GRAPHS U { M(N1, M(N2, M(N3, M(N4, }	
In first order graph theory, we cannot express the condition we can express the condition that a graph has at most	tion that a graph is finite.
We can express the condition that a graph has at most	/f vertras.
We cannot excoress the condition that a graph is controller	fine a second
The diameter of a graph is the max. distance between	two vertices.
The diameter of a graph is the max. distance between The distance between two vertices is the bugth of the	shortest path between them.
eg. To say that a graph has diameter, 2 in first order	
$(\forall x)(\forall y)(\forall x=y) \rightarrow ((x-y) \vee (\exists z)(x-z) \wedge (\exists -y)))$	(diameter at most 2) ~ (7x) (Fy) (F (x~y)) ~ ~ (n=g)
dist $(x, y) \ge 1$ dist $(x, y) \le 2$	

_

In first order theory, we can express the condition that a graph has diameter 7 or diameter at most but we cannot express the notion that a graph is connected.	t 7
Graphs of diameter = 1 (i.e. cliques): GRAPHS V {(Vx)(Vy)((x=y) v (x~y))} = COMPL_GRPHS	• •
has models Ko, Ki, Kz, Kz, Kz, Kg,	
For each candinaliby K (eg. K=0, 5, 5, 5, 2,) there is a model K _K = COMPL_GRPHS	
and any two models of the Comitably infinite IRI = continuum Same cardinality are isomorphic.	• •
COMPL_GRPHS U { DRD4} has a unique model Ka= [up to isomorphism. Th (Ka) = S all statements in graph theory that hold in Ka } Ka (or Th (Ka)) is categorical: Ka is the unique model (up to isomorphism) of	· ·
COMPL_GRATES v ford + & of Th(Kg)	
COMPL_GRAPHS U {MINI, MINZ, } has infinitely many models. But for each cardinality K. there is only one	2
"there are inf. model (up to isomorphuism) of Cardinality K. many vertices" This theory is not categorical but it is K-categorical.	•••

Consider the graph with constably infinite vertex set {5, 13, 17, 29, 37, 41, 53, 61, } (all primes = 1 mod 4).
We say prog if p is a nonsquare mod g (iff q is a nonsquare mod p, by Quadrottic Reciprocity). eg. 5~13 (1,4 are squares mod 5 but 2,3 are nonsquares mod 5).
Let's call this graph R = GRAPHSU {INF}U { Ym,n : m,n \in N } Dirichlet's Theorem Chinese Romainder Theorem
$\begin{cases} 0 \\ \psi_{n_1} \theta \\ \psi_{n_2} \theta \\ \psi_{n_3} \theta \\ \psi_{n_1} \theta \\ \psi_{n_3} \theta \\ \psi_{n_1} \theta \\ \psi_{n_3} \theta $
Ko, Kui, Kg2
R = Randon graph = Erdős-Rényi graph = Rado graph = Universal Graph
Take any contably infinite set V as vertices. For all 14 y in V, flip a coin. Heads? join 17-y. Tails? 14 j (unjoined), With probability 1, R = Tmin for all min ; even if the coin is biased.
Theorem Every countably infinite greph satisfying Ton, or all M. 4 is isomorphic to R.
GRAPHS $V $ SINF $3 $ $V $ $2 $ 3 $m, n \in \mathbb{N}$ 3 has only one countable model. (up to isomorphism). $7 $ $1 $ don't need this exiam; it follows from $\{9_{m,n} : m, n \in \mathbb{N}\}$
i.e. K is No-cellegorical (comitable callegorical).
SRANDOM :=

Question: Is there a universal random graph on $ \mathbb{R} = 2^{4}$ vertices? Status of this problem is not fully known, but independent of ZIC, depends on CH; (Shelinh)
Chromotic numbers of graphs: Given a graph I, a proper (vertex) claring of I is a coloring of the vertices so that no two vertices of the same color are joined. The chromatic number of I, y(I), is the smallest number of colors for which I has a proper coloring. Eq.
$\chi(1) = 3.$
Theorem (Appel-Haken) If T is a planar graph, then $\chi(r) \leq 4$. From this essent, the generalization to infinite planar graphs holds: If T is any planar graph, then $\chi(r) \leq 4$.
First express the condition $\chi(\Gamma) \leq k$ in first order logic: Language in any first-order system has symbols for constants, r-awy functions, r-ary relations. We are given a graph Γ and a positive integer k . Introduce constants v_{11}, v_{22}, \cdots , one for each vertex of the graph. Also k many relations $(j(\cdot), \cdots, j_k(\cdot))$
Arions: $(\forall x)((C_1(x) \cup C_2(x) \cup \cdots \cup C_k(x)) \land \neg ((C_1(x) \land C_2(x)) \lor (C_1(x) \land C_3(x)))$ For every pair of adjacent vertices in j in Γ , include an arion $\neg (C_1(x) \land C_2(x))$. and each l in $\xi_{1,2,\dots,k}$
Let $Z_{\Gamma,k}$ be the set of axioms listed here. A model of $Z_{\Gamma,k}$, i.e. $M \models Z_{\Gamma,k}$, is a proper k-adaring of Γ . of Γ . Such a model exists $F \neq \chi(\Gamma) \leq k$.

By the compactness theorem, $\Sigma_{r,k}$ has a model iff every finite subset of $\Sigma_{r,k}$ has a model i.e. iff every finite gubgraph of Γ has denometric number $\leq k$. More generally, if I is any infinite greph, then M(T) = k iff every finite subgraph TST has $\chi(\Gamma_0) \leq k$; and $\chi(\Gamma_0) = k$ for some finite $\Gamma_0 \subseteq \Gamma$. By the very, the compactness theorem follows easily from the confetences theorem. We won't prove the completences theorem. Here's the argument in the case of graph coloring: If $Z_{\Gamma,k}$ has a model $M \models Z_{\Gamma,k}$, then every finite subset $Z_0 \subseteq Z_{\Gamma,k}$ has a model $M \models Z_0$. Conversely, suppose every finite subset $\Sigma_0 \subseteq \Sigma_{\Gamma,k}$ has a model ("every finite subgraph $\Gamma_0 \subseteq \Gamma$ is properly k-colorable). Suppose $\Sigma_{\Gamma,k}$ does not have a model (Γ is not properly k-colorable). This says $\Sigma_{\Gamma,k}$ is inconsistent and we can derive a contradiction from $\Sigma_{\Gamma,k}$ by the completeness theorem i.e. $\sum_{r,k} t (\theta \land (\theta))$ for some θ . A proof of $\theta \land (\theta)$ from $\sum_{r,k}$ only uses finitely many of our constants v_i , c_i . These v_i 's lie in a finite subgraph $\Gamma_0 \subseteq \Gamma$. This is a contradiction. is not planer: it has K5 as a minor. K₅ A K₁ K₅ K₄ K_{3,3}

Axions for linear (total) order: Language: gingle binary relation symbol R(', '). We denote R(x,y) by x < y.
Axions for linear order: (Yx)(Yy) ((x=y) v (x <y) (y<x))<="" td="" v=""></y)>
Nonempty axian: $(\exists x)(x = x)$ $(\forall x)(\forall y)(\neg(x = y) \leftrightarrow ((x < y) \vee (y < x)))$
(4x)(4y) (~ ((x <y) (y<x)))<="" td="" ~=""></y)>
$(\forall x)(\forall y)(\forall z)(((x < y) \land (y < z)) \rightarrow (x < z))$
Danse linear order without endpoints:
axions for linear order
$(\forall_x)(\forall_y)((x < y) \rightarrow (\exists_z)((x < z) \land (\exists_z < y)))$
$(\forall x)(\exists y)$ $(x < y)$
$(\forall \pi) (\exists y) (y < \pi)$
Models of 'dense linear order without endpoints": ((0, i) CR, with usual '<' } isomorphic Here are three models, no two of which are [R with usual '<' } isomorphic isomorphic.
Bomorphic. There are many micromitable models for every micromitable cardinality K, J [QU (0,1) with ordinary '<' there are many models of cardinality K.