

Trivial examples: Fix $x_0 \in X$. Define $\mu(A) = \begin{cases} 0 & \text{if } \pi_0 \notin A \\ 1 & \text{if } \pi_0 \notin A \end{cases}$. A wassureable cardinal is a cardinal κ which admits a nontrivial countably additive) two-valued massive. Does such a K exist? It so then any larger cardinal satisfies this condition. Given K < K', a nontriviel contably additive two-valued measure on K, lift it to one on K' 1: K-K' injection. Define (for B S K') $\mu'(B) = \mu(i(B)).$ Theorem (Ulam) If there exists a nontrivial countably additive two-valued measure on an incornitable set X then let X be a smallest example. Then X has a montrivial K-additive two-valued measure for all K & IXI. It is K-additive if A measurable cardinal is an uncountable cardinal K having a K-additive two-vialued measure. Do they exist? And who cares? Do they exist? And who cares? So they exist? And who cares? Li So C = 2 dopen = 2° of closed sets Closed = 10° C = 3 closed = 10° C = 3 closed = 10° C = 3 $\mu(\prod A_{k}) = \sum \mu(A_{k})$ for every $\alpha \in I$ $\alpha \in I$ $(1 | < \kappa$ sets $(A_{\alpha} \leq X)$ $[o,i] = \bigcup \{k\}$ · d€[o, i]

Projective Hierarchy Ξ'_{n} , Π'_{n} , $\Delta'_{n} = \Xi'_{n} \cap \Pi'_{n}$
$\begin{array}{c} \underline{A}_{1}^{\prime} \subset \underline{\Xi}_{1}^{\prime} \\ \underline{A}_{2}^{\prime} = \underline{\Sigma}_{1}^{\prime} \cap \underline{\Sigma}_{1}^{\prime} \subset \underline{\Xi}_{2}^{\prime} \\ \end{array}$ Borel sets $\begin{array}{c} \underline{\Pi}_{1}^{\prime} \\ \underline{\Pi}_{2}^{\prime} \end{array}$
$\Sigma' = \Sigma$ analytic sets in X } $A \in \Sigma'$ if A is a continuous image of a Borel set under $f: Y \to X$
II, = { coanalytic sets in X } = { complements of analytic sets } Y Polish space)
Z' = { continuous innages of coanalytic sets }
If there exist measurable cardinals, then every Z'- set is labesgue measureable.
Coming to: an application a large cardinal to the finite world. see Nois directive plachers: Vais Quardles Racks Shelves (Sam Nelson, Quardles)
Coming to: an application a large cardinal to the finite world. see Non-associative algebra: Keis, Quandles, Racks, Shelves, (Sam Nelson, Quandles A kei is a set S with a binary operation & satisfying : for all K, y, z ∈ S, (i) X D X = X (every element is idempotent)
(2) $(X \lor Y) \lor E = (X \lor E) \lor (Y \lor E)$ (D is now distributive over itserif
If (S, J) satisfies (3), it is a shelf. It is a rectance (1) and (3), it is a rack.
If (S, Δ') satisfies (3), it is a shelf. If it satisfies (1) and (3), it is a rack. (or self-distributive system) If (S, Δ) satisfies (1), (3) and (2') it is a quadle. (2'): For all y, the map $S \rightarrow S$, $x \mapsto x \triangleright y$ is injective.

(i) XDX = x The kei axions are equivalent to the
(i) $X \ D \ X = X$ (i) $X \ $
(n)
Examples: Fix c e R and define XDy = cx + (1-c)y for X, y e R. This gives a rack (satisfying (1), (3)). It's a kei if c= ±1. (?)
(satisfying (1), (3)). It's a keep of a line of the line of the
More generally let V he a vector space and REGL(V) invertible linear transformation.
More generally let V ke a vector space and $R \in GL(V)$ invertible linear transformation. For $u, v \in V$, $u \triangleright v = Ru + (I - R)v$. This is an Alexander quandle. (sometimes a
Example Let G be a group (multiplicative). Fix n \in Z. For abe G abb = bab" (n-fold conjugation of a by b). This is a rack,
Sometimes a quandle $T = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $T = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $T = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
Sometimes a quandle. Example The Braid group B_n $T = \begin{cases} T = \\ $
e_{2} , in B_{2} , (23) ,
$\sigma S_n = Sym\{l_1^2, \cdots, h\}$
$ S_n = n$
$P_n \rightarrow 77 S_n$ epimorphism
$(\mathcal{B}_{\alpha}) = \mathcal{H}_{\alpha}$

Kei colorings of braids Given a braid of B. and a Kei (K, D) we color the arcs in a braid diagram of o (i.e. lakel the arcs using elements of K) such that This is the same as requiring that if we label the tops of the u strands, the labels on the bottom are independent of the choice of diagram used for the braid of $\left| \leftrightarrow \right\rangle$) x ⊳ d z yoz (xdy)dz 902 (x02) D (yD2)

A right shalf satisfies right-distributivity (XDY)DZ = (XDZ)D (YDZ) left left XD (YDZ) = (XDY)D (XDZ)
$\frac{1}{16ft} (y \land z) = (x \land y) \land (x \land z)$
★ (K, D) is left-distributive the (K, A) is right-distributive where X A Y = Y D X (transpose the "multiplication table") Switch to studying left shelves. Example found by Richard Laver (set theorist
Curitch to studying left shelves. Example found by Richard Laver (set theorist
A = {12 3 ···· N= "{ (integers med N) Nover U is willen as N mod N.
Theorem There is a unique left shelf on A. satisfying a > 1 = a+1. for all a = A.
Eq. $n=2$, $N=4$, $A=\{1,2,3,4\}=iategers \mod 4$
$\frac{1}{12} + \frac{1}{24} + \frac{1}{24} + \frac{1}{4} + \frac{1}{24} +$
$2 \begin{array}{c} 2 \\ 3 \\ 4 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$
3FZ = 3F ((F))= (3+) + (3+)
Fact: The left-disfributive 2D2 = 2D(IDI) = (2DI) D (2DI) = 3D3 = 4
lew holds in all cases 2D3 = 2D(2D1) = (2D2) D(2D1) = 4D3 = 3
although we haven't 2P4 = 2P (3D1) = (2PS) P (2D1) = SP3=1
checked this here. 122 = 10(101) - (101) P (101) = 2 P2 - 7
$[P3 = (P(2P1) = (IP2) P((IP1) = 4P2)^{=2}$

 A_0 $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ 7 8 7 8 8 8 8 8 Figure 2: Multiplication tables for the first four Laver tables s n->00 the period of the first row of the table ->00. holds if there exists a Laver cardinal (a certain kind of to one knows how to prove this in ZFC. conjecture

••••	Let Th		X	6	2	C	m	y_	•••	sé	t	a	ind	(k	t	1	1	5	٤	ī	ije	ct	i ya	e	m	ap	S [.])	(-	- >	X	<u>ک</u>	•	• •	•	•	•	• •		•		
							.(/			. 1			1					15			J ((1.	to	- 1))		5	D	X			R	4									
	T	0		M	15	. (2	N	NO	.01	æ	_ 1	me	Lez.		~~	pe	51	te	~	•	C	A	Я	10	up)	17	t.	\sim			ידנ		·).								
	100	~															L							D																			
	• •								• •																• •				•	• •													
	• •								• •																• •				•	• •													
	• •								• •									• •							• •				•	• •													
	• •						•	•	• •		•	•	• •					• •	•				•	•	• •				•	• •	•	• •			• •								
• •	• •						•	•	• •		•	•	• •					• •					•	•	• •				•	• •	•	• •											
		• •											• •					• •							• •					• •									• •				
	• •							•	• •				• •					• •	•					•				•	•	• •		• •	•										
	• •						•	•	• •		•	•	• •					• •	•				•	•					•	• •	•	• •											
• •	• •						•	•	• •		•	•	• •					• •	•				•	•	• •				•	• •	•	• •			• •				• •				
		• •											• •				•	• •																					• •				
		• •					•	•	• •		•	•	• •				•	• •	•				•	•	• •		•		•	• •	•	• •			• •				• •		•	•	
	• •	• •					•	•				•	• •				•	• •					•	•	• •				•	• •		•			• •				• •			•	•
	• •	• •					•	•					•				•	• •					•	•	• •							•			• •				• •				
• •	• •	• •		•			•	•	• •		•	•	• •				•	• •	•				•	•	• •				•	• •	•	• •			• •				• •			•	
• •	• •	• •		•			•	•	• •		•	•	• •				•	• •	•				•	•	• •				•	• •	•	• •			• •				• •			•	
	• •	• •					•	•	• •			•	• •				•	• •					•	•	• •				•	• •		• •			• •				• •			•	
	• •	• •					•	•	• •			•	• •				•	• •					•	•	• •				•	• •		• •			• •				• •			•	
	• •	• •						•					• •				•							•								•			• •				• •			*	
	• •	• •					•	•	• •		•	•	• •				•	• •	•				•	•	• •		•		•	• •	•	• •			• •		•		• •			•	
• •		• •					•	•	• •		•	•	• •				•	• •					•	•	• •				•	• •	•	• •			• •	•		•	• •	•		•	
	• •	• •					•	•					• •				•						•	•						• •		• •			• •				• •			•	
		• •						•					• •				•							•								• •			• •				• •		•	•	
													• •																			• •			• •							•	
		• •											• •				•								• •							• •			• •								
													• •																			• •							• •				