

Trivial examples: Fix $x_0 \in X$. Define $\mu(A) = \begin{cases} 0 & \text{if } \pi_0 \notin A \\ 1 & \text{if } \pi_0 \notin A \end{cases}$. A wassureable cardinal is a cardinal κ which admits a nontrivial countably additive) two-valued massive. Does such a K exist? It so then any larger cardinal satisfies this condition. Given K < K', a nontriviel contably additive two-valued measure on K, lift it to one on K' 1: K-K' injection. Define (for B S K') $\mu'(B) = \mu(i(B)).$ Theorem (Ulam) If there exists a nontrivial countably additive two-valued measure on an incornitable set X then let X be a smallest example. Then X has a montrivial K-additive two-valued measure for all K & IXI. It is K-additive if A measurable cardinal is an uncountable cardinal K having a K-additive two-vialued measure. Do they exist? And who cares? Do they exist? And who cares? So they exist? And who cares? Lingen 20 of closed sets Si C A C = 2 closed of TP C = 3 closed ctills intersections of open sets $\mu(\prod A_{k}) = \sum \mu(A_{k})$ for every $\alpha \in I$ $\alpha \in I$ $(1 | < \kappa$ sets $(A_{\alpha} \leq X)$ $[o,i] = \bigcup \{k\}$ · d€[o, i]

Projective Hierarchy Ξ'_{n} , Π'_{n} , $\Delta'_{n} = \Xi'_{n} \cap \Pi'_{n}$
$\Delta' \subset \Xi' \cup \Delta' = \Xi' \cap \Xi' \subset \Xi' \cap$
Borel sets II!
S' = Equalytic sets in X } A \ E_1 if A is a continuous image of a Borel set under f: Y -> X
II, = { coanalytic sets in X } = { complements of analytic sets } Y Polish = pace)
Z' = { continuous innages of coanalytic sets }
If there exist measurable cardinals, then every Z'- set is labesgue measureable.
Coming to: an application a large cardinal to the finite world. see the second
A kei is a set S with a binary operation & satisfying : for all x, y, z ∈ S, (i) x b x = x (even element is idempotent)
(2) (x Dy) Dy = x (x ~ x Dy is in volutiong)
(3) (X DY) DE = (X DZ) D (Y DZ) (D is right-distributive over riser)
If (S, J) satisfies (3), it is a shelf be of satisfies (1) and (3), it is a rack. (or satisfiestive system)
If (S, d) satisfies (1), (3) and (2') it is a quadle. (2'): For all y, the map S->S, x N>xpy is injective.

(i) X D X = X The kei axioms are equivalent to the
(2) (x Dy) Dy = R Reidemenster mores I, II, III.
(3) $(X \land Y) \land \mathcal{E} = (X \land \mathcal{E}) \lor (Y \land \mathcal{E})$
Examples: Fix ce R and define XDy = cx + (1-c)y for Xig E K. 1415 griss & inch
(satisfying (1), ⁽³⁾). It's a ker M C-2'
More generally let V he a vector space and REGL(V) invertible linear transformation.
For u, v ∈ V, u D v = Ru + (I-R)v. «This is an Alexander quandle. (xometimes a
kei). - A () Fix n Z.
Example let o be a group (meriproduce)
For abe G, abb = bab (n-told conjugation of a by b). Units is a nach,
Sometimes a grandle.
Example The Braid group Du =
lg. in B3, [23] [23] [23] [23]
$S_{n} = Sym\{1,2,,n\}$ $\sigma = \begin{cases} 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \end{cases}$
$ S_n = n$, $ S_$
$B_n \rightarrow S_n$ etimorphism $\sigma \sigma' - \chi [= 1]$
$(\mathcal{B}_{\alpha}) = \mathcal{H}_{\alpha}$

Kei colorings of braids Given a braid of B. and a Kei (K, D) we color the arcs in a braid diagram of o (i.e. lakel the arcs using elements of K) such that This is the same as requiring that if we label the tops of the u strands, the labels on the bottom are independent of the choice of diagram used for the braid of $\left| \leftrightarrow \right\rangle$) x ⊳ d z yoz (xdy)dz 402 (x02) D (4D2)

A right shelf satisfies right-distributivity (XDY) DZ = (XDZ) D (YDZ)	
$ (eff \cdot \cdot \cdot \cdot eff \cdot \cdot \cdot \cdot \cdot eff \cdot \cdot \cdot \cdot \cdot $	
	· · · · ·
Switch to studying left shelves. Example found by Richard Laver (set 7	hearist
in Boulder)	 . .
$A_n = \{1, 2, 3, \cdots, N = 2^n\}$ (integers much N) Now. Us written as N wi	od N.
Theorem There is a unique left shelf on A. satisfying a DI = a+1. for a	ell E An
Eq. $n=2$, $N=4$, $A=\{1,2,3,4\}=iategers \mod 4$	
$\frac{P[1234]}{12424} = 4P(1Pl) = (4Pl)P(4Pl) = (Pl = 2)$	
2 3 4 3 4 4p 3 = 4p (2p1) = (4p2) p (4p1) = 2p1 = 3	
$\begin{array}{cccc} 3 & 4 & 7 & 7 & 7 \\ 4 & 1 & 2 & 3 & 4 \end{array} \\ \begin{array}{cccc} 4 & 0 & 4 & 2 & 4 \\ 1 & 2 & 3 & 4 \end{array} \\ \begin{array}{ccccc} 4 & 0 & 4 & 0 & 4 \\ 4 & 0 & 4 & 2 & 4 \\ \end{array} \right) = (4 + 2) \left(4 + 2) \left(4 + 2 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 \\ \end{array} \right) = (4 + 2) \left(4 + 2 & 0 & 0 & 0 \\ \end{array} \right)$	
$3 \lor 2 = 3 \lor (1 \lor 1) = (3 \lor 1) \lor (3 \lor 1) = 4 \lor 4 = 4$	
Fact: The left-distributive 2 D2 = EP(IDI) = (2DI) D(2DI) = 3D3 = 4	
law holds in all cases 2D3 = 2D(2D1) = (2D2) D(2D1) = 4D3 = 3	
although we haven't 214 = 2 P (3D1) = (2D3) P (2D1) = 3 D3 = 4	
checked this here. $ D2 = D(V) = (V) P(V) = 2 P2 = 4$	
(P S = (F(2P)) = ((P2) P ((P)) - 4 P 2 - 2	

 $\mathbf{2}$ A_0 $\mathbf{2}$ $\mathbf{2}$ A_2 $\mathbf{2}$ Figure 2: Multiplication tables for the first four Laver tables two As n > 00 the period of the first row of the table -> 00 . conjecture holds if there exists a Laver cardinal (a certain kind of inal). No one knows how to prove this in ZFC. Conjecture large have an inverse system of left shelves We

Let X be any set and ht M = { injective maps X -> X }. Then M is a monoith under composition. (A group iff X is finite). Let A be a set of sentences over some language L, and let M, N = A (models of A i.e. L-structures which satisfy ell eq. A: axions for a ring. the sentences in A) $Z, Q \neq A$ and Z is a submodel of Q (there is a 1-to-1 map $Z \xrightarrow{l} Q$ preserving the operations. But Z is not elementarily embedded in Q because there are sentences ϕ over L (elementary embedded) such that $Z \neq \phi$, $Q \neq \neg \phi$ (or the other way around) e.g. eg. $\phi: (\exists x) (\forall y) (\neg (y+g=x))$. is an elementary embedding if I is injective We say $L: M \rightarrow N$ $(M, N \models A)$ where l(M) is <u>elementarily</u> equivalent to N: For all ϕ , $l(M) \neq \phi$ iff $N \neq \phi$. and for every sentence \$, 1(M) < N submodel A portion of the Koch Snowlake curve illustrating self-similarity.

There are many embeddings of C in itself. Pick such an embedding $L: C \to C$ $C \downarrow L(C) \subset C$ are models of the field axions A . $L(C)$ is an elementary submodel of C i.e. $L: C \to C$ is an elementary embedding i.e. C is an elementary extension of $L(C)$.
Note: $L: \mathbb{C} \to \mathbb{C}$ preserves $0, 1, +, \times, -$ but not the topology (inaccessible) (inaccessible) For models of ZFC ($L: \in$) a Laver cardinal is a cardinal κ such that the V, admits an elementary embedding $L: V_{\kappa} \to V_{\kappa}$ which is not surjective.
This (i) generates a the following: If f,g: X -> X are injective then fDg: X -> X is If f,g: X -> X are injective then fDg: X -> X is
$(f \lor g)(x) = \begin{cases} f g f(x) & \text{if } x \in f(x) \\ x & \text{if } x \notin f(x) \end{cases}$ $(f \lor g)(x) = \begin{cases} f g f(x) & \text{if } x \notin f(x) \\ x & \text{if } x \notin f(x) \end{cases}$ $(f \lor g)(x) = \begin{cases} f g f(x) & \text{if } x \notin f(x) \\ x & \text{if } x \notin f(x) \end{cases}$

why is > a left shelf?	
$((f \triangleright g) \triangleright (f \triangleright h))(x)$	Fa
= $(f D (g D h))(x)$ Check three cases	$\left(\begin{array}{cccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$
If $x \in fg(X)$ then $\pi = fg(g)$ so	
$(g \triangleright h)(x) =$	
1: $V_{k} \rightarrow V_{k}$ is an elementary embedding but It generates a shelf under "D". This is the free $f_{i} = \{1, 0, (D, D), D, (D, (D, D), \dots, S\}$ The are distinct except when required by the left shelf f_{i} is a countably infinite left shelf; moreover f_{i}	t not surjective. se shelf on one generator \overline{f}_{i} se combinations of ι under P axion e.g. $(\iota \triangleright \iota) \triangleright (\iota \triangleright \iota) = \iota \triangleright (\iota \triangleright \iota)$ $= \lim_{k \to 0} A_{ik}$

Lot X be an infinite set. A fitter on X is a collection I of subsets of X such that
(i) Ø € F. X ∈ F. (Sets in Fraze large subsets of X.)
(ii) If AEF and ASBEX then BEF.
(iii) IF A A'EF the ANA'EF.
By Zova's lemma, every F fitter extends to an ultrafiter U2 on X which is a filter
satisfying_
civ) for all ASX, either A or X-A is in U.
Il gives a two-valued finitely additive probability measure on X.
To get a monprincipal utrafittor on X, ic start with the Firechet fitter consisting of all
cofinite subsets of X' (complements of finite subsets of X) and take U 27 a maximal
fitter containing F. U is nonprincepal: U contains no finite sets.
We take I to be a nonprincipal uttrafitter on w = {01,2,3, } and consider the ring
R ^w = { (a, a, a, a,): a; E R } with coordinatewrise operations. R ^w is a commutative
ring with identity, not a field; eq. (1,0,1,0,)(0,1,0,1,) = (0,0,0,0,) = 0 ∈ ℝ ² .
Now identify two sequences a = (a, a, az,) b= (bo, b, bz,) if they agree almost everywhere
with respect to \mathcal{U} i.e. if $\{i \in \omega : q_i = b_i\} \in \mathcal{U}$.
In the case a= (1,0,1,0,1,0,) we have a:= o whenever i f ? 3, 5, 7 }; b:= o whenever i f ? 24,6
b= (0, (, 0, 1, 0, 1,) If \$1,3,5,7,3 = 21 then a~ (0,0,0,0,0) and b~ (1, 1, 1, 1, 1,) ~3
If {0,2,4,6,3=91 then a~ (1,1,1,1,1,) and b~ (0,0,0,0,0,).

Identify two sequences in R ^W whenever they agree almost everywhere w.r.t. U.
Then we get a quotient ring R"/~ = *R denoted I in the handout.
This is the hidd of nonstructure on hupervools
this is the fight of toron loss of and field and it's a gal closed field.
IR has the same test order the of pol degree , then I but we have an elementary
eq. every poly f(x) E R [x] has a root in IR). In 1901
embedding of R in TR. The main difference between IR and IR is that IR has no
infinite or infinitesmal demarts best * IR does.
The Archimedean property says that if a>0 then a+a+a++a = aa>1 for some n.
(Va) (a>0 -> (a+a>1 V a+a+a>1 V a+a+a>1 V))
This property is not expressible in the first order theory of fields.
This property is not expressible in the first order theory of fields. R satisfies this property * R does not.
This property is not expressible in the first order theory of fields. R satisfies this property, *R does not.
This property is not expressible in the first order theory of fields. R satisfies this property, *R does not. Eq. $\varepsilon = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5},) \in \mathbb{R}^{n}$, up to equivalence mod \mathcal{U} , defines an infinites nal
This property is not expressible in the first order theory of fields. R satisfies this property, "R does not. Eq. $\mathcal{E} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5},) \in \mathbb{R}^{n}$, up to equivalence mod 21, defines an infinites and in "R.
This property is not expressible in the first order theory of fields. R satisfies this property, *R does not. Eq. ε = (1, ±, ±, ±, ±,) ∈ R ^w , up to equivalence mod 21, defines an infinites nal in *R. nε = (n, n, n, n, n,) ∈ R ^w , nε < 1 since this holds for all but the first n terms of
This property is not expressible in the first order theory of fields. R satisfies this property, *R does not. Eq. E = (1, ±, ±, ±, ±,) ∈ R ^M , up to equivalence mod 21, defines an infinites nal in *R. nE = (n, n, n, n,) ∈ R ^M , nE < 1 since this holds for oth but the first n terms of the sociale co.
This property is not expressible in the first order theory of fields. R satisfies this property, *R does not. Eq. E = (1, ½, ½, ¼, ½,) ∈ R ^m , up to equivalence mod U, defines an infinites nal in *R. nE = (n, <u>n</u> , <u>n</u> , <u>n</u> ,) ∈ R ^m , nE < 1 since this holds for all but the first n terms of the sequence. ⊥ - (1, ≥ 4, 5) ∈ R ^m defines an infinite element of *R.
This property is not expressible in the first order theory of fields. R satisfies this property, "R does not. Eq. $\mathcal{E} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots) \in \mathbb{R}^{n}$, up to equivalence mod \mathcal{U} , defines an infinites and in "R. $n\mathcal{E} = (n, \frac{n}{2}, \frac{n}{3}, \frac{n}{4}, \cdots) \in \mathbb{R}^{n}$, $n\mathcal{E} < 1$ since this holds for all but the first n terms of the sequence. $\frac{1}{2} = (1, 2, 3, 4, 5, \cdots) \in \mathbb{R}^{n}$ defines an infinite element of "R.
This property is not expressible in the first order theory of fields. R satisfies this property, "R does not. Eq. $\mathcal{E} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots) \in \mathbb{R}^{n}$, up to equivalence mod \mathcal{U} , defines an infinites nal in "R. $n\mathcal{E} = (n, \frac{n}{2}, \frac{n}{3}, \frac{n}{4}, \cdots) \in \mathbb{R}^{n}$, $n\mathcal{E} < 1$ since this holds for all but the first n terms of the sequence. $\frac{1}{2} = (1, \frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \cdots) \in \mathbb{R}^{n}$ defines an infinite element of "R.
This property is not expressible in the first order theory of fields. R satisfies this property, "R does not. Eq. $\varepsilon = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots) \in \mathbb{R}^{n}$, up to equivalence mod \mathcal{U} , defines an infinites and in "R. $n\varepsilon = (n, \frac{n}{2}, \frac{n}{3}, \frac{n}{4}, \cdots) \in \mathbb{R}^{n}$, $n\varepsilon < 1$ since this holds for all but the first n terms of the sequence. $\frac{1}{2} = (1, \frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \cdots) \in \mathbb{R}^{n}$ defines an infinite element of "R.
This property is not expressible in the first order theory of fields. R satisfies this property, "TR does not. Eq. $\mathcal{E} = (1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{5},) \in \mathbb{R}^{n}$, up to equivalence mod 21, defines an infinites and in "R. $n\mathcal{E} = (n, \frac{n}{2}, \frac{n}{3}, \frac{n}{4},) \in \mathbb{R}^{n}$, $n\mathcal{E} < 1$ since this holds for all but the first n terms of the sequence. $\frac{1}{2} = (1, 2, 3, 4, 5,) \in \mathbb{R}^{n}$ defines an infinite element of "R.

Every structure Mhas a enlargement "M. first-orden	· · · · · ·	1-0
Kos' Theorem If Mo, M, M, = A (statements over a language over L) then the	e utrapa	unt -
$\left(\frac{\prod}{i\in\omega}M_i\right)/g_{\mathcal{U}}\neq A$		
Eq. A = axions for fields, M:= R for all i. 11 M: = 2(m, m, m, m,) : m;	€ M; ξ.	
Eq. L = language of a single binary relation '~' L = axions for ordinary graphs of degree 3	· · · · · ·	
A model of A TFA, is an ordinary graph of degree 3.		•
For each it w, take $\Gamma_i \neq A$ eg. $\Gamma_0 = \int_0^{\infty} \Gamma_i = \int_0^{\infty} \Gamma_i \Gamma_i = \int_0^{\infty} \Gamma_i \Gamma_i \Gamma_i \Gamma_i$		
$\prod_{i \in W} \left[\sum_{i=1}^{n} \sum_{i=1}^{n} \left\{ \sum_{i=1}^{n} \left\{ \sum_{i=1}^{n} \sum_{i=1}^{n} \left\{ \left\{ v_{i}, v_{i}, v_{i}, v_{i}, v_{i}, v_{i} \right\}, \cdots \right\} \right\} \right\} \right] : v_{i} \in \left[\sum_{i=1}^{n} \left\{ \sum_{i=1}^{n} $		
I a nonprincipal ultrafitter on w i.e. v. is a vertex in I:		•
Now (TTT:)/91 is the set of equiv. classes of sequences V= (Vo, V1, V2,).		
If $v, w \in (\prod \Gamma_i)/\mathcal{U}$ then $v \sim w$ iff $v, \sim w_i$ for almost all i i.e. {itew:	v.~w} € °	U.
This graph T has dagree 3. If T: has order < n for some n then T is a gr	egh of	ine
order < a. why? Let Q be the first order stalment that I has at most		رکی
Since $1 = 0$, $1 = \frac{11}{i \in W} \frac{1}{2}$		

You can take the "*" operation applied to any standard mathematrical object, e.g.
$\mathbb{R} \xrightarrow{*} \mathbb{R} \qquad \mathbb{S} \xrightarrow{*} \mathbb{S} \qquad (\mathbb{*}\mathbb{S} = \mathbb{S} \mathbb{S} \qquad \mathbb{S} = \mathbb{S} \xrightarrow{*} \mathbb{S}$
If f: R > R, then # : * R -> * R enlarges F. How do we define f(x) for
$\alpha \in \mathbb{R}^{*}$? α is represented by $(a_{0}, q_{1}, q_{2}, \cdots) \in \mathbb{R}$.
*f(a) is represented by (f(q,), f(q,), f(q_e),) ∈ R. The equiv. class of This
Seguence is well-defined in TR.
Suppose f: R-> R is différentiable. Classically,
$f'(a) = \lim_{t \to 0} \frac{f(a+t) - f(a)}{t}$
The nonstandard approach: $f'(a) = st \left[\frac{f(a+\epsilon) - f(\epsilon)}{\epsilon} \right]$ where ϵ is an infinitesmal
st: bounded hyperroals to reals . "st (a) is the standard part of a, i.e. the
TD In the order topology which is not netrizable and not separable.
Integrals can be similarly defined in a nonstandard way: if I is lebesgue

integrable then $\int_{a}^{b} f(t) dt = St \left[\frac{1}{N} \sum_{i=1}^{N} f(a + i\Delta x) \Delta x \right]$ where N is an unbounded hypernatural number Ax= 6-9 Hypernatural numbers *N = (IT N)/ql $N = \{1, 2, 3, \dots, \}$. Sequences $(n_0, u_1, n_2, \dots) \in \mathbb{N}^{\omega}$ mod \mathcal{U} gives \mathbb{N} . NC*N *IN looks like "shifted copies of 2" $|*N| = |*R| = |R| = 2^{K_{\circ}}$ $2^{H_0} \leq (M) \leq (N)^{\omega} = H_0^{H_0} = 2^{H_0}$ Given $\alpha \in (0,1)$ (real) consider the sequence $u_{\alpha} = (\lceil \alpha \rceil, \lceil 2\alpha \rceil, \lceil 3\alpha \rceil, \lceil 4\alpha \rceil, \cdots)$ If $\alpha < \beta$ in (0,1) then $u_{\alpha} < u_{\beta}$ $u_{\alpha} \neq u_{\beta}$ mod U.

An example of an elementary statement about IR that has a (possible) shorter nonstandard proof than standard proof: Theorem (Sierpinski) IF a,..., ak, b are positive reals then $\left\{ \left\{ (n_{1}, \dots, n_{k}) \in \mathbb{N}^{k} : \frac{q_{1}}{n_{1}} + \frac{q_{2}}{n_{2}} + \dots + \frac{q_{k}}{n_{k}} = \int_{0}^{k} \right\}$ This statement was proved using elementary methods by Sierpinski. A later nonstandard proof by Rose: Suppose $S = \{(n_1, \dots, n_k) \in \mathbb{N}^k : \frac{q_1}{n_1} + \dots + \frac{q_k}{n_k} = b\}$ is infinite. Then *S contains a solution (n, ..., n,) where not all n \in N (some n;'s are unbounded); l≤r≤n. There Say $n_1, \dots, n_r \in \mathbb{N}^* \setminus \mathbb{N}$; $n_{r+r_1}, \dots, n_k \in \mathbb{N}$; $\frac{q_r}{n_1} + \cdots + \frac{q_r}{n_r} = b - \frac{q_{r+r}}{n_{r+r}} - \cdots - \frac{q_k}{n_k}$ Contradiction. positive infinitesual ER (bounded)

We have first-order axions for group theory. Axions for the class of abelian groups: • axions of group theory • (\frac{1}{x})(\frac{1}{y})(xy=yx) Axions for class of nonabelian groms · axions for group theory • $(\exists x)(\exists y)(xy \neq yx),$ There is no first-order axiomateration of the class of cyclic groups. Cyclic: $(\exists g)(\forall x)(\exists y \in \mathfrak{F}(x = g^n))$ Not permissible in first order group theory. If there were a list of axions A for the theory of cyclic groups then (TT Citz)/U is a group of order 2th, not cyclic. Cyclic of order 2 is not cyclic. $(C_{X}C_{3}\times C_{q}\times C_{5}\times \cdots)/q_{\ell}$

A shorter argument that the class of cyclic groups is not first order axionisticable: Suppose A is a collection of statements in first order group theory such that $G \neq A$ iff G is a cyclic groups. There exists an infinite model (additive Z) so by the Upward Lowenbeim-Skolem theorem, there exist models of arbitrarily large cardinality. Take group uncountable model $G \neq A$; then G is not cyclic. Let A be a set of statements in graph theory such that $\Gamma \models A$ iff Γ is a graph of degree 2. Note: this equivalent to saying Γ is a disjoint union of aycles $\Delta \Box \langle \mathcal{L} \rangle$ + + + + Let A be the axions for field theory (the language $0, 1, +, -, \times$). $F_{p} \neq A$ is the field of prime order p_{j} $F = algebraic closure of <math>F_{p}$ Let $F = (\Pi \overline{F}_p)/q = (\overline{F}_z \times \overline{F}_z \times \overline{F}$ Since $\overline{F_p} \neq A$ F is a field. What is it? F $\subseteq C$.

F = (IT Fp)/U is a field of characteristic zero. It is algebraically closed. (Each IF, is alg. closed as we described in the first month.) The theory of alg. closed fields of characteristic zero is incomitably categorical. $|F| = 2^{40}$ (look back four pages) so $F \cong C$. Now consider $F = (TF_p)/qu = (f_z \times f_z \times f_z \times f_q \times f_r \times \dots)/ql$ This is a field. It is a subfield of C (up to isomorphism) It has characteristic zero. $|F| = 2^{K_0}$ $F \notin C$ since F has irreducible poly's of every degree. (for every $n \ge 1$, there exists a poly. $f(x) \in F[x]$ of degree n which is irreducible. But so that, Q also has this property.) R[x] has irred. poly's of degree 2 but they all give rise to C: R has a unique extension field of degree 2. Q has infinitely many extension fields of degree 2. If has a unique extension of each degree n≥1. F is an ancountable field of char. O having a unique extension field of each degree n≥1.

Take a subset $S \leq N^{\omega} = \{(n_0, n_1, n_2, ...\}: n_i \in N\}$. Two players, Alice and Bob, take turns picking elements of $N = 91, 2, 3, 4, ... \}$ starting with Alice, resulting in a play x=(a, b, a, b, a, b, ...) \in N^W. If x e S, then A wins. If x e N^W-S, B wins. Eq. S is the set of eventually constant sequences. This has a winning strategy for Bob. Eq. S is the set of eventually periodic sequences. Bob's advantage. Eq. S is any comptable collection of sequences i.e. SE N°, ISI = N°. Bob has a winning strategy. Emimerate S = {S, S, S, S, ... }. On turn j, Bob chooses any n ∈ N which differs from the 2j-indexed term in Sj. Eq. S is the set of sequences having no '3,1,4,1,5,9' as subsequence. Africe has a winning strategy. stategy. Eq. S is the set of 'universal' sequences in N° (sequences containing every finite sequence of notural numbers appears as a consecutive subsequence). Bob can play 2,2,2,... to win. A strategy is a function: N° > N. A strategy for Alice (or Bob) is a winning strategy finite strings (40, 60, ...) if the player in grestian is guaranteed to with finite strings (40, 60, ...) if they follow that strategy. Axion of Determinacy (AD): for every SGIN, either Alice or Bolo has a winning strategy for the game G. Every open game is determined : either Alice or Bob has a winning Theorem (Gale, Stewart) Strategy.

A An IF The a	basic ope SS fini	f c cn su C N aditi	t et ev in in in	IN se is s that bee an	t: an en, - of	a t S S S S S S S S S S S S S S S S S S	A Give rbit in N set	en tran (S v is	has (Xe y s	rue se	t of	x _{n-1} x x x x x x x x	ē -) € 225i0 1. 5 -	fope ≡ M : ope that	en se	ts // w	eve (x ₀ , x innic	g , x	Se X	ubse m·r)) ays)∈	to M N	μ 	IN is Ali	a a rai	is of io, Ti, Sa, basil are are	pen Xour = <u>e</u> dete au	in and a per	, X	x _m 2 ; set ed	er i i i i i i i i i i i i i i i i i i i	N 3	
ie H	· · · · X, · · · · X, · · · ·		307 Un	766	5 4 3	74 (€ 	۲ ٤(۱	Xo,	e n X.,	, Xn-	- 30 ⁶	1766	4394 Nu+ r	, %.+	د د د	· · · · · · · · · · · · · · · · · · ·		· · ·	י אני אני	e	n N		•	· · ·	· · ·	•	•	· · ·	· ·	•	· ·
												_				-		к	-													
Th Alse	is s	iet iF	is S S	оре ⊆ 1	n N ^w	bu is	t d	not ased		losed Lie	: . G	its s	; 0	Mo	re g	t is cherc	no elly,	, . T	f S	~ . S <i>C</i>	R)'	م	3	a	Bore	2 6	et,	7	the	J	ene (Sç
Th Alse is	is s deter	iet iF , mine	is SS ed.	- pe ⊆ 1	n N ^{ew}	bui is	t d	not osed		losed -Lie	G	its s	; 0	Mot	e g	t is cnerc	no elly,	т. Т. 	F S	~ · · 3 <i>C</i>	¢V'	د نهر د	3	A	Borel	2 4	ek,	7	He.	J	me (SS
Th Alse is	is s deter	iet iF ,mine	is SS 2d	оре ⊆ 1	n N ^w	; ;;	t d	not		losed -Lie	. G	chi s	; 0	o myle Mot	e g	t is cnerc	no elly,	, F	f S		¢V'	- - - - - - -	Š	A	Borel	2 c	et,	7		J	eml (55
Th Alse is	is s , deter	iet iF , mine	is SS	оре <u>-</u> 1	n N ^{ew}	bui is	t d	not		losed -Ce	G	zhi s	; 0	omple Mot	e g	Cnerco	no ally,	, F	f S	s S C S C S C S C S C S C S C S C S C S	¢V'		3	A	Bore	2 4		7	He.	J	eme (55
Th Alse is	is s deter	iet iF ,mine	is S S	<i>е</i> ре ⊆ 1	N ^w	bui is	: 	not		losed -Ce	G	zh: s	; 0	o mple Mo	e g	t is Cnerc	no ally,		F S	ŝ	¢V'		8	a a 	Bore	2 c	et,	7		J	eme (ε ς
Th Alse	is s Jeter	iet 7F , mine	is S S	ере = 1	n N ^{ev}	bui is	.[cl	not		losed -Cie	G	s t		o mple Mot	e g	Cnerco Cnerco A A A A A A A A A A A A A A A A A A A	no elly,	- F	F S		¢V'			a 	Bored	2 4	et,	7		Ĵ		5
Th Alse	is s deter	ist iF , mine	is SS 2	<i>∈</i> 1	N ^{er}	<i>b</i> и З	.(not		losed -Ke	G		; 0	Mo		Cnerco Cnerco A A A A A A A A A A A A A A A A A A A	NO elly,	ι τ. 	F S		¢V °		5	A	Bored	2		. 7				S
Th Alse	is s deter	iet if	is S S		N ^{er}	bui is	đ đ	not		losed Ke	G	s dis	; 0	Mo	E g		NO Selly,				¢N [°]		%	a	Bored	2		. 7				5
Th Alse	is s deter	iet if mine	is S 2d		n N ^{ew}	6. . is	t cl	not nsed		-Ke		s the second sec	; 0	Mo	e g						¢V,		%	A	Bored	2		. 7				5

Consider S= { (a, b, a, b,) : b is odd or	there exists n E u	such that b. =	bo-2n and	
Alice has a asimiling strategy.	h a.	ao, bo, ai, b, ,, b,,	$(a_0, b_0, b_0, b_0, b_0, b_0, b_0, b_0, \dots, b_0, b_0, b_0, b_0, b_0, b_0, b_0, b_0$	b-2m+1)}
Typical play: (1, 48 47, 46, 45, 44, 43,, 3	2, 1)aime	≁		
Alice has won; this game has value 0 (" O moves for	Alice to via)		
(1, 48, 47,, 3,2) has value 0.				
(1, 48, 47,, 4,3) has value 1.				
(1, 48, 47,, 5, 4)				
: (1 40 42) has value 22.				
$\left(\left(\begin{array}{c} 1 \\ 0 \end{array}\right)^{-1} \left(\left(\begin{array}{c} 1 \end{array}\right)^{-1} \left(\left(\begin{array}{c} 1 \\ 0 \end{array}\right)^{-1} \left(\left(\begin{array}{c} 1 \\ 0 \end{array}\right)^{-1} \left(\left(\begin{array}{c} 1 \end{array}\right)^{-1} \left(\left(\left(\left(\begin{array}{c} 1 \end{array}\right)^{-1} \left($				
has value w = sup {0,12.	······································			
() has value w+1.				
	D. 0 00:		deter acc	· · · · ·
In general, for every position of the game in	which the	has a wonard Alice has	g strange gy we as	means
a value to that position which is an or	oter Some p	ositions will had	- have any value	assigned
I move to reach a position of vance (, c				
these are winning port				
(he value is defined ecursilley as tollo	h A			
Case I: It's Bob's turn. [Osition 140,00, 4,	et aluce a	l la hana	b) for be N	
Define the value of (90, 60,, 9,) to be the sup	of the volues of			
(it these sequences have values).				

Case II : It's Alice's teen. Position (90, 60, 91, 61,, 94-1, 6) This position has value at 1 where a is the min value of (4 assuming there exist any such positions of value.	$n \geq 0$ (i.e. () if $n = 0$). $(b_0, a_1, b_1, \dots, a_{n-1}, b_{n-1}, a)$, $a \in \mathbb{N}$
More generally, take any set X and consider games determine (typically X = {0, 13 or N).	ed by $S \subseteq X^{\omega}$
AD is inconsistent with AC is. ZF+ (AD -> ~AC). AD is inconsistent with AC is. ZF+ (AD -> ~AC).	
In ZF + AD : Every X S IR is lebesgue measurable. Ever uncon table X S IP contains a perfect set.	Compare: in ZFC = ZF + AC there exist X S IR such that X = not lobes and massically
Every set X S PR is "almost open" it differs from an open set by a weagre set.	A is clear give maasur dole.
Theorem (Woodin) Con (ZF+AD) ZF Con (ZFC + 3 00 many whereas (a (ZF+AC) C> (a (ZF))	Woodin Cerdinals)
$W_{\mu}(x, x, y), (z + r + c) < - r + c) <$	

Galsay, O'Co	mmor 2004	: grad	students at	Grnell		
$C = \{a, a, a\}$, a ₂ ,) :	4.€ \$	$0, 1$ $\} = 2^{2}$	Cantor space		1
is a graph	in which	$a = (a_0, a_1, q_2)$	····), b=(b	p_0, b_1, b_2, \dots) are a	ljevent iff 9,6	ditter in exactly
one coordinale) = ho.e	t Goords in	which all ditter		
This goad	has mille	atoly he	my connected	components, each	of which is	Comtebul.
(Haming	graph i.e.	cube of	Extrate dinte	(sion) and a second		
Prodicionate (in the count	be case) under th	emselves using w	as index set.	
The siciparis (sector 10	S & Sal	$- \xi h \in C$:	$d(ha) < a \\ l = 0$	montal compone	t of at C
they pick a	् र्य	> = [4]				lat aicles the the
	_					
Strategy: 1	Perficipant n	en ob	Serves [a]	for the actual se	uence and "	efse picas
Strategy: 1 coordinate	Perficipant n in <a>.	ew ob	Serves [a]	for the actual se	vence and "	
Strategy: 1 coordinate	Participant n in <a>.	ew ob The n	Serves [a] rathematics of	for the actual so	sence - A stude	of Generalized
Storategy: 1 coordinate Hardin & To Hot	Redicipant n in (a>. in (a>. Problems	ew ob The n	Serves [a] rathematics of	for the actual se	sence - A study	of Generalized
Storategy: 1 coordinate Hardin & Ta Hat	Participant n in <a>. eybor, 2013: Problems	ew ob The n	Serves [a] rathematics of	for the actual se	sence - A stude	of Generalized
Storetegy: coordinate Hardin & Ta Hat	Participant n in (a>. sylor, 2013: Problems	ew ob The n	Serves [a] rathematics of	for the actual se	sence - A stude	of Generalized
Storetegy: 1 coordinate Hardin & Ta Hat	Participant n in <a>. eybor, 2013: Problems	ew ob The m	Serves [a]	for the actual se	sence - A stude	of Generalized
Storetegy: 1 coordinate Hardin & Ta Hat	Perficipant n in (a>. sylor, 2013: Problems	€w ob The n	Serves [a]	for the actual se	sence - A stude	of Generalized
Storetegy: 1 coordin tote Hardin & To Hat	Participant n in <a>. in <a>. Problems	ew ob The n	Serves [a] rathematics of	for the actual se	sence - A study	of Ceneralized
Storetegy: 1 coordin tote Hardin & Ta Hat	Perficipant n in (a>. aylor, 2013: Problems	ew ob The m	Serves [a]	for the actual se	sence - A stude	of ceneralized
Storetegy: 1 coordinate Hardin & Ta Hat	Participant n in (a>. in (a>. Problems	ew ob	Serves [a]	for the actual se	rence - A stude	of Ceneralized
Storetegy: 1 coordinate Hardin & Ta Hat	Perficipant n in (a>. sylor, 2013: Problems	ew ob The n	Serves [a]	for the actual se	sence - A stude	of Generalized
Storetegy: 1 coordin tote Hardin & Ta Hat	Participant n in (a>. inglor, 2013: Problems	ew ob	Serves [a]	for the actual se	sence - A study	of Generalized

Hardin-Taylor Theorem: Want a predictor <f; Desired properties:</f; 	for f: R→R which is unknown for t>to.
(a) <f>+ equees with for on (-00, to)</f>	\mathbf{R} $(\mathbf{R} - \mathbf{R})$
(b) <f>_to only depends on f(-oo, to)</f>	K = 2 fanctions K - R 2 (not just coolianons functions)
(c) <f> agrees with f on [to, to + E) for som</f>	e E>0 depending on to.
Theorem: In ZFC there exists a predictor R×R ~	$\mathbb{R}^{k}, \mathbb{C}_{b_{1}} \mathbb{C}) \longrightarrow \langle \mathbb{C} \rangle_{\mathbb{C}}$
satisfying (a) and (b); and it satisfies (a) & all	but contable many to e R.
More precisely, the set of times to $\in \mathbb{R}$ for which (with respect to standard order). This set is countable,	(c) fails has no infinite descending seguences, nowhere dense (its closure has empty interior)
and lebesgal measure O.	(a b) with $a < b$.
SCR is nowhere dense it S does not contain any	
eq. {1, 2, 3, 4, 5, } V {0} is nowhere dense.	
Proof For each $t_0 \in \mathbb{R}$, we have an equiv. relation on 1 $[f]_{t} = \{q : q^{t_0} \in \}$ let \preccurlyeq be a well-ordering	$\mathbb{R}^{\mathbb{R}}$ given by $f \stackrel{t_{o}}{=} g$ iff f, g agree on (-∞, t_o). of $\mathbb{R}^{\mathbb{R}}$ Define $\langle f \rangle_{t_{o}} = the \prec - \text{least element of [f]}_{t_{o}}$
If $b_0 < b_1$ then $[f]_{b_1} \subseteq [f]_{b_1}$ so $\langle f \rangle_{b_1} \succcurlyeq \langle f \rangle_{b_2}$	$= \min_{k} [+ \bot_{b_0}]$
$\langle f \rangle_{t} $	

Define $S = \{t \in \mathbb{R} : \langle f \rangle_{t} \neq \langle f \rangle_{t}$ for all $t' > t \}$.
$S_{\mathbf{f}} = \{\mathbf{f}, \mathbf{f}, \mathbf{f}$
Suppose S contains an infinite descending sequence t, > tz > tz > in R.
Then $\langle f \rangle_{t_1} > \langle f \rangle_{t_2} > \langle f \rangle_{t_3} > \cdots$ which is not possible since is a week intering on the
If $S \ge (a, b)$ with $a \ge b$ then the intervals $(a + \frac{b \cdot a}{n+1}, a + \frac{b \cdot a}{n})$ $(n \ge 1, 2, 3, 4, \cdots)$ are mutually disjoint, pick $t_n \in S \cap (a + \frac{b \cdot a}{n+1}, a + \frac{b \cdot a}{n})$ giving an intimite decreasing
Relationship with bot problems: Suppose we play the host game with participants 0, 1, 2, 3, and hats are assigned from SR , B}. The winning strategy still works if every participant $n \in \omega = \{0, 1, 2, 3,\}$ can see the hats only for the participants m>n.
Stronger bran for any infinite set of participants: Participants can agree beforehand on a well ordening of participants i.e. index themselves by some ordinal \propto . If each participant $\beta \in \alpha$ can see only the hets on the heads of participants "to the right" ($\beta < \gamma < \alpha$). See handout
Caleb's problem: There are three wizards. I put a real number on the forehead of each wizard. Each wizard can see only the numbers on the other two wizards' foreheads. Each wizard may list finitely guesses for the eal number on his/her forehead. What strategy guarantees that at least one wizard has a correct guess?