
HW Problems
Instructions: The following is a list of problems of varying difficulty, to
which I will add over the coming days. Submit solutions to problems of
your choice on WyoCourses, as you are able. There is no need to com-
plete all problems, but you are welcome to submit additional solutions
as separate pdf documents as you are able. As usual, problems may be
discussed with other students, but submitted solutions should be your
own work.

1. (Extensionality) The axiom of extensionality (AE) is used in ZFC set theory to assert

that two sets having the same elements, must be the same set. This language has a

single binary relation symbol ‘∈’ (not an actual relation, but a symbol whose intended

interpretation is ‘is an element of’). The axiom is as follows:

AE: (∀x)(∀y)[((∀z)((z ∈ x)↔ (z ∈ y)))→ (x = y)]

Which of the following structures satisfy the axiom AE?

(a) R with the usual ‘<’ relation. The question here is, if we take R as the underlying

set of the structure, and interpret ‘∈’ as the ordinary relation of ‘strictly less than’,

is the axiom AE satisfied?

(b) R with the usual ‘6’ relation

(c) R with the usual ‘>’ relation

(d) N = {1, 2, 3, 4, . . .} with the usual divisibility relation ‘
∣∣’. Here a

∣∣ b iff there exists

c such that b = ac.

2. (The Order Relation is Algebraically Definable) In class we pointed out that the usual

order relation ‘6’ on R may be defined algebraically; that is,

R |= (∀x)(∀y)((x 6 y)↔ (∃z)(x+ z2 = y))

where z2 is an abbreviation for zz. Thus it makes very little difference whether we

regard R (with its usual addition, multiplication, etc.) as a field (with the algebraic

axioms for +, −, ×, 0, 1) or as an ordered field (with additional axioms for its order

relation). An important consquence of this is that R has no nontrivial algebraic

automorphisms. (That is, if θ : R → R is any bijection which preserves addition and

multiplication, then θ must also preserve order, and consequently θ is the identity



map.) Show that the order relation on Z can also be defined algebraically. That is,

find a formula ϕ(x, y) in the first order theory of rings, such that

Z |= (∀x)(∀y)((x 6 y)↔ ϕ(x, y)).

The point is that φ(x, y) is expressed using quantifiers (over Z) together with the

usual symbols of propositional logic (¬, ∨, ∧) and the ring symbols 0, 1, +, −, ×.

3. (First Order Properties of Graphs) We consider graphs as structures defined over a

language with one binary relation symbol ‘∼’, having just two axioms, IR (‘irreflexive’)

and SY (‘symmetric’), thus:

IR: (∀x)(¬(x ∼ x))

SY: (∀x)(∀y)((x ∼ y)→ (y ∼ x))

Which of the following graph properties are expressible in first order logic? Explain.

(a) The requirement that a graph contains a triangle.

(b) The requirement that a graph contains no triangles.

(c) The requirement that a graph is connected. (A graph is connected if for any two

vertices x and y, there is a path x ∼ v1 ∼ v2 ∼ · · · ∼ vk ∼ y.)

(d) The requirement that a graph is not connected.

(e) The requirement that a graph has diameter 3. (This says that the maximum

distance between any two vertices is 3. The distance between two vertices is 3 if

there is a path of three edges from one vertex to the other, and there is no shorter

path than this between the two given vertices.)

(f) The requirement that a graph is connected but its diameter is infinite. (This

means that any two vertices are joined by a path, but there is no upper bound

for the distance between two vertices.)

4. (More Examples of ℵ0-Categorical Graphs) Examples of ℵ0-categorical graphs con-

sidered in class include the countable complete graph, and the countable random

graph R (the Erdős-Rényi graph, also known as the Rado graph). These examples

have diameter 1 and 2, respectively. Here we look for other examples. See #3 where

graphs are described as structures over a language with a single relation symbol ‘∼’

having axioms IR and SY. Find an example of an ℵ0-categorical graph of diameter 3.

(In your answer, you should give an example of a graph Γ having diameter 3, with a

countably infinite number of vertices, such that Γ |= T for some set T consisting of

sentences in first order graph theory, for which every countable model of T is isomor-

phic to Γ. Here T may include a statement asserting that the diameter is 3; but T



may include other properties as well. Clearly, there exist non-isomorphic countable

graphs of diameter 3, so T cannot simply consist of one statement asserting that the

diameter is 3.)

5. (Application of the Compactness Theorem) There exist functions f : R→ R satisfying

f(x + y) = f(x) + f(y) for all x, y, with f(1) = 0 and f(α) = 1 where α =
√

2. In

fact there are many such functions, all of them discontinuous everywhere. Here is

an outline of the usual proof: Recall that R is an infinite-dimensional vector space

over Q. Since α is irrational, {1, α} is a linearly independent set of size 2 in this

space. By Zorn’s Lemma (see the handout on our course website), we may extend

{1, α} ⊂ B where B is a basis for R over Q. Finally, given any a ∈ R, denote by

f(a) the coefficient of α in the unique expression of a as a Q-linear combination of

the elements of B.

Give an alternative proof, using the Compactness Theorem for First Order Logic,

using the following proof outline. Start with a language L containing

• Four binary function symbols +, −, ×, / for the four basic operations. However

we simply abbreviate x × y as xy. The values a/0 can be disregarded since a/b

is never used unless b 6= 0.

• A collection of constant symbols ca, one for each a ∈ R. We will abbreviate

c0 = 1, c1 = 1, c√2 = α.

• Another collection of constant symbols fa, one for each a ∈ R.

Let A be the following set of axioms:

• The usual field axioms. Here we include the usual commutative, associative and

distributive laws, and the axioms for 1 and 0. I won’t list them all, but the list

would include
¬(0 = 1);

(∀x)((1x = x) ∧ (0 + x = x));

(∀x)(∀y)(∀z)(x(y + z) = xy + xz);

(∀x)(∀y)(¬(y = 0)→ (x/y)y = x); etc.

• Axiom Schema: For every pair of real numbers a, b ∈ R, list the axioms ca + cb =

ca+b and cacb = cab. Yes, this is a huge collection of 2ℵ0 separate axioms; but

the size of our list of axioms is not a problem. Including them is an easy way

to ‘hardwire’ every model to contain a copy of the reals. (Models don’t have to

be isomorphic to the reals, but they will necessarily be extension fields of R, i.e.

every model will have a subfield isomorphic to R.)

• Axiom Schema for the values of f : For every pair of real numbers a, b ∈ R, list a

separate axiom fa + fb = fa+b. Also list the axioms f1 = 0 and fα = 1.



We need to show that the set of axioms A is consistent, i.e. that it has a model. By

the Compactness Theorem, it suffices to show that every finite subset of the axioms

A0 ⊂ A has a model. The point is, such a subset only contains finitely many axioms

of the form fa + fb = fa+b. The values of a and b appearing in these axioms in A0,

together with the values 1 and
√

2, lie in a finite dimensional subspace of R over Q.

One can argue as above, except that Zorn’s Lemma is no longer needed since we are in

a finite dimensional vector space. Fill in the missing details of this argument! Please

pay attention to why it is that the axiom schema for the f -values (a list of 2ℵ0 separate

axioms) cannot be replaced by a single quantified formula (∀a)(∀b)(fa + fb = fa+b);

nor can we replace the set of constant symbols fa by a function symbol f with the

axiom (∀x)(∀y)(f(x+y) = f(x) + f(y)).

6. (Ramsey’s Theorem) Given a set V , the complete graph on V is the graph KV whose

vertices are the elements of V , in which every pair {x, y} of vertices x 6= y in V is an

edge. In particular if |V | = n then we have the complete graph Kn of order n, with(
n
2

)
edges; and the countable complete graph KN with vertex set N = {1, 2, 3, . . .}.

We fix a set of k distinct colors, which we use to color the edges of a given graph Γ

(each of the edges of Γ being assigned arbitrarily one of the k colors). The following

are two versions of Ramsey’s Theorem.

(Infinite Ramsey Theorem) Given any k-coloring of the edges of KN, there exists an

infinite subset A ⊆ N such that the subgraph KA ⊆ KN is monochromatic, i.e. every

edge having both its endpoints in A has the same color.

(Finite Ramsey Theorem) Given any positive integers k and n, there exists a positive

integer R = Rk,n (depending on both k and n) such that for every N > R and every k-

coloring of the edges of KN , there is a monochromatic n-clique in KN , i.e. a complete

subgraph with n vertices in KN , all of whose edges have the same color.

First show that the Infinite Ramsey Theorem follows easily (almost trivially) from

the Finite Ramsey Theorem. Then, using the Compactness Theorem, show that the

Finite Ramsey Theorem follows also from the Infinite Ramsey Theorem.

Really? Shouldn’t it be the other way around? No, we stated the problem cor-

rectly, because the equivalence of the two theorems is most readily understood in

contrapositive form. The negation of the Infinite Ramsey Theorem would say that

there exists a k-coloring of the edges of KN for which none of the infinite subcliques

KA ⊆ KN are monochromatic. This would mean that for every n, there exist arbi-

trarily large integers N such that the edges of KN can be k-colored without allowing

any monochromatic n-cliques. That would give us the negation of the Finite Ramsey

Theorem.



Conversely, you will want to assume the negation of the Finite Ramsey Theorem,

and conclude from this the negation of the Infinite Ramsey Theorem. Write down a

set of axioms which describe a k-coloring of the edges of KN for which none of the

infinite subcliques KA ⊆ KN are monochromatic. Use your hypothesis (the negation

of the Finite Ramsey Theorem) to say that every finite subset of these axioms can

be satisfied. Then use the Compactness Theorem to conclude that the entire list of

axioms can be satisfied; and this gives the negation of the Infintie Ramsey Theorem

as the desired conclusion.

7. (Compactness in Topology and in Logic) Finish the discussion, started in class, ex-

plaining why the the Compactness Theorem of First Order Logic can be viewed as

a statement of topological compactness. Here is an outline, which you can use as

a starting point. A collection C of subsets of X has the finite intersection property

(f.i.p.) if C1 ∩ · · · ∩ Ck 6= ∅ for every finite list of sets C1, . . . , Ck ∈ C. A topological

space X is compact iff
⋂
C 6= ∅ whenever C is a collection of closed sets in C with

the finite intersection property. You should verify, using De Morgan’s Laws, that this

condition is equivalent to the usual definition of compactness (namely that every open

cover of X has a finite subcover). Now let L be a first order language, and let X be

a collection of L-structures. (Strictly, we should ask X to be a set of L-structures.

If X were the collection of all L-structures, that would typically be a proper class

rather than a set; and then strictly speaking, we wouldn’t call X a topological space.

But we could call it a ‘large topological space’ and the same idea would go through.)

For every L-sentence θ, let Kθ ⊆ X be the set of all L-structures M ∈ X such that

M |= θ. Denote by K the collection of all such subsets Kθ ⊆ X. Argue that K is

‘closed’ under finite unions, since Kθ1∪· · ·∪Kθk = Kθ1∨···∨θk . Show that the collection

of all intersections of sets in K (i.e. sets of the form
⋂
C ⊆ X where C ⊆ K) is ‘closed’

under finite union and arbitrary intersection, and therefore X may be understood as

a topological space whose closed sets are the subsets of the form
⋂
C ⊆ X (and K

is a collection of basic closed sets for this topology). Explain why the Compactness

Theorem for First Order Logic, in this new interpretation, says simply that X is a

compact topological space.

8. (Transfinite Induction) It is easy to partition the point set R3 into Euclidean lines.

There are many ways to do this, such as by taking all lines parallel to a fixed line `. It

is much trickier to partition the ‘punctured 3-space’ X = R3 r {O} into lines, where

O is a single point of R3, so X consists of all points of R3 with one point removed. I

have posted a solution to this on the course website (see ‘Transfinite Induction’). As

an example of something quite similar, show that it is possible to partition the points

of R3 into Euclidean circles.



9. (Cantor’s Diagonal Argument) This is presented in all the textbooks on Set Theory,

including Cameron’s book. It is so important that you should make sure you can

explain it yourself. I suggest you first think about how you would try to prove it on

your own; then refer to the hints below without reading the proof in a book. Here

PA denotes the power set of A (the set of all subsets of A). Prove that |A| < |PA|.
By repeating this argument, one argues that there is no largest set.

Hint : First find an injection A → PA; this shows that |A| 6 |PA|. In order

to prove strict inequality, suppose there is a bijection f : A → PA, and obtain a

contradiction. For this, consider B = {a ∈ A : a /∈ f(a)}. Since B ∈ PA, we must

have B = f(b) for some b ∈ A, so . . .

10. (Cantor-Bernstein-Schröder Theorem) This is even more basic than #9 and if you

have not thought about it yourself, then you owe it to yourself to not wait any longer to

figure it out! Once again, you can find the proof in many books including Cameron’s.

Try to figure out as much as you can without peeking in the book; but if you really

find yourself stuck, then by all means read the details in the book and then restate

the argument yourself. The theorem justifies the linear ordering of sets according to

their size.

(a) Given sets A and B, we say that |A| 6 |B| if there is an injection A→ B. Show

that if |A| 6 |B| and |B| 6 |C|, then |A| 6 |C|.

(b) If f : A → B is injective and g : B → A is injective, find a bijection h : A → B.

(Hint : Draw a picture showing some elements of A and B, and add arrows to

indicate the action of f and g. This starts to look like a directed graph. Using

the arrows for f and g, find a new set of arrows for h defining a bijection.)

Now it makes sense to define |A| = |B| whenever there is a bijection A→ B. Part (b)

says that if |A| 6 |B| and |B| 6 |A|, then |A| = |B|. Make sure you appreciate the

subtlety of this statement: the proof is not too hard, but neither is it trivial. Finally,

we say that |A| < |B| if there is an injection A → B but no bijection (i.e. |A| 6 |B|
but |A| 6= |B|).

The argument in (b) is quite constructive, not requiring the Axiom of Choice.

However, in order to prove that our order relation is a total order (the ‘trichotomoy

law’: given any two sets A,B, either |A| < B, or |A| = |B|, or |A| > |B|) requires the

Axiom of Choice.

11. (Lower Cardinals) The following are also fairly standard results. Try to come up with

your own explanations for them; but if you find yourself looking up the arguments, at

least make sure you can explain them clearly yourself.



(a) Explain why |R| = |PN| where PA denotes the power set of A, and N =

{1, 2, 3, . . .}. This justifies writing |R| = 2ℵ0 .

(b) Show that |R2| = |R|. So by induction, |Rn| = 2ℵ0 . (More generally, if A is any

infinite set, then |An| = |A| for every positive integer n. However, that more

general argument requires the Axiom of Choice. In the case of the set R, an

easier argument is available using an explicit bijection, not requiring the Axiom

of Choice.)

(c) Show that |Rω| = 2ℵ0 . Here Rω denotes the set of all countable real sequences

(a0, a1, a2, a3, . . .) where ai ∈ R for all i.

(d) Show that |RR| = |PPN| = 22
ℵ0
> |R|. Here RR denotes the set of all functions

R→ R.

(e) Show that the set of all continuous functions R→ R has cardinality 2ℵ0 . (Hint :

Every continuous function R→ R is uniquely determined by its restriction to Q.

Use (c) to complete the proof.)


