
Propositions as Types

Aaron McClellan and Dr. Philip Wadler
February 28, 2023

Intro

Goals

State propositions as types

Motivate, introduce theory of computation

Introduce theory of logic

Introduce natural deduction

Introduce lambda calculus as a synonym of logic

Part 1

Part 2

1

Goals

State propositions as types

Motivate, introduce theory of computation

Introduce theory of logic

Introduce natural deduction

Introduce lambda calculus as a synonym of logic

Part 1

Part 2

1

Part 1

Propositions as types

Propositions←→ types

Proofs←→ programs

Simplification of proofs←→ evaluation of programs

2

Propositions as types

Propositions←→ types

Proofs←→ programs

Simplification of proofs←→ evaluation of programs

2

Propositions as types

Propositions←→ types

Proofs←→ programs

Simplification of proofs←→ evaluation of programs

2

Entscheidungsproblem

David Hilbert in 1930

Hilbert’s Entscheidungsproblem

An “effectively calculable” algorithm to prove all
statements

3

Entscheidungsproblem

prove all statements

4

Entscheidungsproblem

all statements

5

Entscheidungsproblem

Kurt Gödel

6

“effectively calculable”

Hilbert was vague and imprecise

Church’s lambda calculus in 1936

Gödel’s recursive functions in 1936

Turing’s Turing machines in 1937

7

“effectively calculable”

Hilbert was vague and imprecise

Church’s lambda calculus in 1936

Gödel’s recursive functions in 1936

Turing’s Turing machines in 1937

7

Lambda calculus

Inductive construction of primitives (“λ -definable”)

Evaluation represented as substitution rules
(“normalization ” to a “normal form”)

Showed problems with no λ -definable solution i.e.
uncalculable/undecidable problems

Proposed λ -definable as definition for “effectively
calculable”

Proposal eventually accepted

Types introduced to guarantee termination

8

Lambda calculus

Inductive construction of primitives (“λ -definable”)

Evaluation represented as substitution rules
(“normalization ” to a “normal form”)

Showed problems with no λ -definable solution i.e.
uncalculable/undecidable problems

Proposed λ -definable as definition for “effectively
calculable”

Proposal eventually accepted

Types introduced to guarantee termination

8

Lambda calculus

Inductive construction of primitives (“λ -definable”)

Evaluation represented as substitution rules
(“normalization ” to a “normal form”)

Showed problems with no λ -definable solution i.e.
uncalculable/undecidable problems

Proposed λ -definable as definition for “effectively
calculable”

Proposal eventually accepted

Types introduced to guarantee termination

8

The theory of proof

Gentzen introduced natural deduction

Logical rules come in pairs: introduction and elimination

Introduce A ∧ B with proofs of A and B, eliminate by
concluding A or B

Rules to simplify proofs =⇒ consistency

Subformula principle: proofs contain only what is
necessary (not “roundabout”)

sfp(A ∧ B) = {A ∧ B} ∪ sfp(A) ∪ sfp(B)

Used a roundabout proof for SFP in natural deduction

9

Roundabout proofs?

Mean value theorem Rolle’s theorem

10

Intuitionistic logic

Introduced by Brouwer in early 1900s

Generalization of classical logic

Predates ZFC…

…but not Russell’s paradox

Disagreement about the nature of infinity

11

Intuitionistic logic

Proof of A ∨ B must show which of A or B

Law of excluded middle (A ∨ ¬A) doesn’t hold generally

Proof by negation holds, proof by contradiction doesn’t
generally

(A =⇒ false) =⇒ ¬A (¬A =⇒ false) =⇒ A

12

Why?

Simplifies teaching

Easier to discern types

Allows immediate program generation

Introduces other systems of logic

13

Why?

Simplifies teaching

Easier to discern types

Allows immediate program generation

Introduces other systems of logic

13

Extensions to propositions as types

∀ and ∃ quantifiers←→ dependent types

Classical logic←→ continuation-passing style

Second-order logic←→ second-order lambda calculus

Higher-order logic←→ depends (Isabelle/HOL)

14

Extensions to propositions as types

∀ and ∃ quantifiers←→ dependent types

Classical logic←→ continuation-passing style

Second-order logic←→ second-order lambda calculus

Higher-order logic←→ depends (Isabelle/HOL)

14

Extensions to propositions as types

Modal logic (“necessarily true” + “sometimes true”)←→
monads (distributed computation, Haskell)

Temporal logic (“holds now”, “will hold eventually”, “will
hold soon”)←→ partial evaluation (computer
engineering)

Linear logic (use assumptions exactly once)←→ linear
types, session types (C++, quantum computing,
communication)

15

Extensions to propositions as types

Cartesian closed category←→ simply-typed lambda
calculus (category theory, quantum physics)

Topology←→ homotopy type theory

16

Extensions to propositions as types

Cartesian closed category←→ simply-typed lambda
calculus (category theory, quantum physics)

Topology←→ homotopy type theory

16

Part 2

Natural deduction

Colors

Logical formulas (A ∧ B) will always blue…

…unless I’m using color to group things together

17

Intuitive reading

premise1 premise2 premise3
rule or logic

conclusion

If the premises hold then we can conclude that the
conclusion holds by some rule or logic.

18

Intuitive reading

premise1 premise2 premise3
rule or logic

conclusion

If the premises hold then we can conclude that the
conclusion holds by some rule or logic.

18

& rules

A B ∧-I
A ∧ B

A ∧ B ∧-E1A
A ∧ B ∧-E2B

19

=⇒ rules

[A]x
...
B Imp-Ix

A =⇒ B

A =⇒ B A Imp-E
B

20

Intuitive reading

[A]x
...
B

The assumption of A leads to a proof of B.

21

Example proof

Let’s prove B ∧ A =⇒ A ∧ B .

[B ∧ A]z
∧-E2A

[B ∧ A]z
∧-E1B ∧-I

A ∧ B Imp-Iz
B ∧ A =⇒ A ∧ B

22

Example proof

Let’s prove B ∧ A =⇒ A ∧ B .

[B ∧ A]z
∧-E2A

[B ∧ A]z
∧-E1B ∧-I

A ∧ B Imp-Iz
B ∧ A =⇒ A ∧ B

22

Simplification rules

...
P

...
Q ∧-I

P ∧ Q ∧-E1P

simplifies to
...
P

[P]x
...
Q Imp-Ix

P =⇒ Q

...
P Imp-E

Q

simplifies to

...
P...
Q

23

Proof simplification example

[B ∧ A]z
∧-E2A

[B ∧ A]z
∧-E1B ∧-I

A ∧ B Imp-Iz
(B ∧ A) =⇒ (A ∧ B)

B A ∧-I
B ∧ A

Imp-E
A ∧ B

Left is the proof from earlier

Right is the machinery to use the implication

24

Proof simplification example

[B ∧ A]z
∧-E2A

[B ∧ A]z
∧-E1B ∧-I

A ∧ B Imp-Iz
(B ∧ A) =⇒ (A ∧ B)

B A ∧-I
B ∧ A

Imp-E
A ∧ B

simplifies to
B A ∧-I
B ∧ A ∧-E2A

B A ∧-I
B ∧ A ∧-E1B ∧-I

A ∧ B

25

Simplification rules

...
P

...
Q ∧-I

P ∧ Q ∧-E1P

simplifies to
...
P

[P]x
...
Q Imp-Ix

P =⇒ Q

...
P Imp-E

Q

simplifies to

...
P...
Q

26

Proof simplification example

B A ∧-I
B ∧ A ∧-E2A

B A ∧-I
B ∧ A ∧-E1B ∧-I

A ∧ B
simplifies to
A B ∧-I
A ∧ B

27

Lambda calculus

Untyped lambda calculus

Let L, M, N be lambda terms and x, y, z be variables

Λ := x | λx.M | MN

A system of functions (and later types); no sets

28

Intuitive reading

Λ := x | λx.M | MN

Variables are placeholders for lambda terms

Abstractions are functions with a variable as input
f (x) = M or func f(x) { return M(); }

Applications start computation in M with N as input
M(N)

Evaluation is applying all terms of the form (λx.M)N

29

Exercise

What does λx.x do?

Identity function

What does (λx.xx)(λx.xx) do?

Hint: Let M = λx.xx and N = λx.xx

Hint: MN = M(λx.xx)

(λx.xx)(λx.xx) expands to itself =⇒ infinite loop!

30

Exercise

What does λx.x do? Identity function

What does (λx.xx)(λx.xx) do?

Hint: Let M = λx.xx and N = λx.xx

Hint: MN = M(λx.xx)

(λx.xx)(λx.xx) expands to itself =⇒ infinite loop!

30

Exercise

What does λx.x do? Identity function

What does (λx.xx)(λx.xx) do?

Hint: Let M = λx.xx and N = λx.xx

Hint: MN = M(λx.xx)

(λx.xx)(λx.xx) expands to itself =⇒ infinite loop!

30

Exercise

What does λx.x do? Identity function

What does (λx.xx)(λx.xx) do?

Hint: Let M = λx.xx and N = λx.xx

Hint: MN = M(λx.xx)

(λx.xx)(λx.xx) expands to itself =⇒ infinite loop!

30

Exercise

What does λx.x do? Identity function

What does (λx.xx)(λx.xx) do?

Hint: Let M = λx.xx and N = λx.xx

Hint: MN = M(λx.xx)

(λx.xx)(λx.xx) expands to itself =⇒ infinite loop!

30

Types

Solution to nontermination

Let A, B be types

Let A→ B be function types

Function types =⇒ product types A× B

31

Types

Solution to nontermination

Let A, B be types

Let A→ B be function types

Function types =⇒ product types A× B

31

Intuitive reading

A→ B
f : A→ B

A× B
(a ∈ A,b ∈ B)

32

Typed lambda calculus

Append a type to every lambda term

M : A, read M has type A

33

× rules

M : A N : B ×-I
〈M,N〉 : A× B

L : A× B ×-E1
fst L : A

L : A× B ×-E2sec L : B

34

→ rules

[x : A]x
...

N : B →-Ix
λx.N : A→ B

L : A→ B M : A →-E
LM : B

35

Intuitive reading

[x : A]x
...

N : B
A variable x of type A is used to construct a term N of

type B.

36

Example program

Let’s create a program of type B× A→ A× B .

[z : B× A]z
×-E2sec z : A

[z : B× A]z
×-E1

fst z : B ×-I
〈sec z, fst z〉 : A× B

→-Iz
λz.〈sec z, fst z〉 : B× A→ A× B

37

Example program

Let’s create a program of type B× A→ A× B .

[z : B× A]z
×-E2sec z : A

[z : B× A]z
×-E1

fst z : B ×-I
〈sec z, fst z〉 : A× B

→-Iz
λz.〈sec z, fst z〉 : B× A→ A× B

37

Evaluation rules

...
M : P

...
N : Q ×-I

〈M,N〉 : P × Q
×-E1

fst 〈M,N〉 : P

evaluates to
...

M : P

[x : P]x
...

N : Q →-Ix
λx.N : P→ Q

...
M : P →-E

(λx.N)M : Q

evaluates to

...
M : P...

N[M/x] : Q

38

Intuitive reading

N[M/x]

N with M replacing x.

39

Program evaluation example

[B× A]z
×-E2sec z : A

[B× A]z
×-E1

fst z : B ×-I
〈sec z, fst z〉 : A× B

→-Iz
λz.〈sec z, fst z〉 : B× A→ A× B

y : B x : A
×-I

〈y, x〉 : B× A
→-E

(λz.〈sec z, fst z〉)〈y, x〉 : A× B

Left is the program from earlier

Right is the machinery to run the function

40

Program evaluation example

[z : B× A]z
×-E2sec z : A

[z : B× A]z
×-E1

fst z : B ×-I
〈sec z, fst z〉 : A× B

→-Iz
λz.〈sec z, fst z〉 : B× A→ A× B

y : B x : A
×-I

〈y, x〉 : B× A
→-E

(λz.〈sec z, fst z〉)〈y, x〉 : A× B
evaluates to

y : B x : A
×-I

〈y, x〉 : B× A
×-E2

sec 〈y, x〉 : A

y : B x : A
×-I

〈y, x〉 : B× A
×-E2

fst 〈y, x〉 : A
×-I

〈sec 〈y, x〉, fst 〈y, x〉〉 : A× B

41

Program evaluation example

y : B x : A
×-I

〈y, x〉 : B× A
×-E2

sec 〈y, x〉 : A

y : B x : A
×-I

〈y, x〉 : B× A
×-E2

fst 〈y, x〉 : A
×-I

〈sec 〈y, x〉, fst 〈y, x〉〉 : A× B
evaluates to

x : A y : B
×-I

〈x, y〉 : A× B

42

Understanding?

Do you understand…

…the correspondence?

…how natural deduction describes semantics?

…how program generation could work?

…why computer science would use this over other
formulations?

…more than that?

43

Do you understand…

…the correspondence?

…how natural deduction describes semantics?

…how program generation could work?

…why computer science would use this over other
formulations?

…more than that?

43

Do you understand…

…the correspondence?

…how natural deduction describes semantics?

…how program generation could work?

…why computer science would use this over other
formulations?

…more than that?

43

The punchline

The punchline

Plaque of the Pioneer

44

The punchline

It would be a mistake to characterize lambda
calculus as universal, because calling it

universal would be too limiting.

45

