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Intro



Goals

State propositions as types

Motivate, introduce theory of computation

Introduce theory of logic

Introduce natural deduction

Introduce lambda calculus as a synonym of logic
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Part 1



Propositions as types

Propositions←→ types

Proofs←→ programs

Simplification of proofs←→ evaluation of programs
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Entscheidungsproblem

David Hilbert in 1930

Hilbert’s Entscheidungsproblem

An “effectively calculable” algorithm to prove all
statements
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Entscheidungsproblem

prove all statements
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Entscheidungsproblem

all statements
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Entscheidungsproblem

Kurt Gödel
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“effectively calculable”

Hilbert was vague and imprecise

Church’s lambda calculus in 1936

Gödel’s recursive functions in 1936

Turing’s Turing machines in 1937
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Lambda calculus

Inductive construction of primitives (“λ -definable”)

Evaluation represented as substitution rules
(“normalization ” to a “normal form”)

Showed problems with no λ -definable solution i.e.
uncalculable/undecidable problems

Proposed λ -definable as definition for “effectively
calculable”

Proposal eventually accepted

Types introduced to guarantee termination
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The theory of proof

Gentzen introduced natural deduction

Logical rules come in pairs: introduction and elimination

Introduce A ∧ B with proofs of A and B, eliminate by
concluding A or B

Rules to simplify proofs =⇒ consistency

Subformula principle: proofs contain only what is
necessary (not “roundabout”)

sfp(A ∧ B) = {A ∧ B} ∪ sfp(A) ∪ sfp(B)

Used a roundabout proof for SFP in natural deduction
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Roundabout proofs?

Mean value theorem Rolle’s theorem
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Intuitionistic logic

Introduced by Brouwer in early 1900s

Generalization of classical logic

Predates ZFC…

…but not Russell’s paradox

Disagreement about the nature of infinity

11



Intuitionistic logic

Proof of A ∨ B must show which of A or B

Law of excluded middle (A ∨ ¬A) doesn’t hold generally

Proof by negation holds, proof by contradiction doesn’t
generally

(A =⇒ false) =⇒ ¬A (¬A =⇒ false) =⇒ A
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Why?

Simplifies teaching

Easier to discern types

Allows immediate program generation

Introduces other systems of logic
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Extensions to propositions as types

∀ and ∃ quantifiers←→ dependent types

Classical logic←→ continuation-passing style

Second-order logic←→ second-order lambda calculus

Higher-order logic←→ depends (Isabelle/HOL)
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Extensions to propositions as types

Modal logic (“necessarily true” + “sometimes true”)←→
monads (distributed computation, Haskell)

Temporal logic (“holds now”, “will hold eventually”, “will
hold soon”)←→ partial evaluation (computer
engineering)

Linear logic (use assumptions exactly once)←→ linear
types, session types (C++, quantum computing,
communication)
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Extensions to propositions as types

Cartesian closed category←→ simply-typed lambda
calculus (category theory, quantum physics)

Topology←→ homotopy type theory
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Part 2



Natural deduction



Colors

Logical formulas (A ∧ B) will always blue…

…unless I’m using color to group things together
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Intuitive reading

premise1 premise2 premise3
rule or logic

conclusion

If the premises hold then we can conclude that the
conclusion holds by some rule or logic.
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& rules

A B ∧-I
A ∧ B

A ∧ B ∧-E1A
A ∧ B ∧-E2B
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=⇒ rules

[A]x
...
B Imp-Ix

A =⇒ B

A =⇒ B A Imp-E
B
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Intuitive reading

[A]x
...
B

The assumption of A leads to a proof of B.
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Example proof

Let’s prove B ∧ A =⇒ A ∧ B .

[B ∧ A]z
∧-E2A

[B ∧ A]z
∧-E1B ∧-I

A ∧ B Imp-Iz
B ∧ A =⇒ A ∧ B
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Simplification rules

...
P

...
Q ∧-I

P ∧ Q ∧-E1P

simplifies to
...
P

[P]x
...
Q Imp-Ix

P =⇒ Q

...
P Imp-E

Q

simplifies to

...
P...
Q
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Proof simplification example

[B ∧ A]z
∧-E2A

[B ∧ A]z
∧-E1B ∧-I

A ∧ B Imp-Iz
(B ∧ A) =⇒ (A ∧ B)

B A ∧-I
B ∧ A

Imp-E
A ∧ B

Left is the proof from earlier

Right is the machinery to use the implication
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Simplification rules

...
P
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Proof simplification example

B A ∧-I
B ∧ A ∧-E2A

B A ∧-I
B ∧ A ∧-E1B ∧-I

A ∧ B
simplifies to
A B ∧-I
A ∧ B
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Lambda calculus



Untyped lambda calculus

Let L, M, N be lambda terms and x, y, z be variables

Λ := x | λx.M | MN

A system of functions (and later types); no sets
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Intuitive reading

Λ := x | λx.M | MN

Variables are placeholders for lambda terms

Abstractions are functions with a variable as input
f (x) = M or func f(x) { return M(); }

Applications start computation in M with N as input
M(N)

Evaluation is applying all terms of the form (λx.M)N
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Exercise

What does λx.x do?

Identity function

What does (λx.xx)(λx.xx) do?

Hint: Let M = λx.xx and N = λx.xx

Hint: MN = M(λx.xx)

(λx.xx)(λx.xx) expands to itself =⇒ infinite loop!

30



Exercise

What does λx.x do? Identity function

What does (λx.xx)(λx.xx) do?

Hint: Let M = λx.xx and N = λx.xx

Hint: MN = M(λx.xx)

(λx.xx)(λx.xx) expands to itself =⇒ infinite loop!

30



Exercise

What does λx.x do? Identity function

What does (λx.xx)(λx.xx) do?

Hint: Let M = λx.xx and N = λx.xx

Hint: MN = M(λx.xx)

(λx.xx)(λx.xx) expands to itself =⇒ infinite loop!

30



Exercise

What does λx.x do? Identity function

What does (λx.xx)(λx.xx) do?

Hint: Let M = λx.xx and N = λx.xx

Hint: MN = M(λx.xx)

(λx.xx)(λx.xx) expands to itself =⇒ infinite loop!

30



Exercise

What does λx.x do? Identity function

What does (λx.xx)(λx.xx) do?

Hint: Let M = λx.xx and N = λx.xx

Hint: MN = M(λx.xx)

(λx.xx)(λx.xx) expands to itself =⇒ infinite loop!

30



Types

Solution to nontermination

Let A, B be types

Let A→ B be function types

Function types =⇒ product types A× B
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Intuitive reading

A→ B
f : A→ B

A× B
(a ∈ A,b ∈ B)
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Typed lambda calculus

Append a type to every lambda term

M : A, read M has type  A
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× rules

M : A N : B ×-I
〈M,N〉 : A× B

L : A× B ×-E1
fst L : A

L : A× B ×-E2sec L : B
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→ rules

[x : A]x
...

N : B →-Ix
λx.N : A→ B

L : A→ B M : A →-E
LM : B
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Intuitive reading

[x : A]x
...

N : B
A variable x of type A is used to construct a term N of

type B.
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Example program

Let’s create a program of type B× A→ A× B .

[z : B× A]z
×-E2sec z : A

[z : B× A]z
×-E1

fst z : B ×-I
〈sec z, fst z〉 : A× B

→-Iz
λz.〈sec z, fst z〉 : B× A→ A× B
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Evaluation rules

...
M : P

...
N : Q ×-I

〈M,N〉 : P × Q
×-E1

fst 〈M,N〉 : P

evaluates to
...

M : P

[x : P]x
...

N : Q →-Ix
λx.N : P→ Q

...
M : P →-E

(λx.N)M : Q

evaluates to

...
M : P...

N[M/x] : Q
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Intuitive reading

N[M/x]

N with M replacing x.

39



Program evaluation example

[B× A]z
×-E2sec z : A

[B× A]z
×-E1

fst z : B ×-I
〈sec z, fst z〉 : A× B

→-Iz
λz.〈sec z, fst z〉 : B× A→ A× B

y : B x : A
×-I

〈y, x〉 : B× A
→-E

(λz.〈sec z, fst z〉)〈y, x〉 : A× B

Left is the program from earlier

Right is the machinery to run the function
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Program evaluation example

[z : B× A]z
×-E2sec z : A

[z : B× A]z
×-E1

fst z : B ×-I
〈sec z, fst z〉 : A× B

→-Iz
λz.〈sec z, fst z〉 : B× A→ A× B

y : B x : A
×-I

〈y, x〉 : B× A
→-E

(λz.〈sec z, fst z〉)〈y, x〉 : A× B
evaluates to

y : B x : A
×-I

〈y, x〉 : B× A
×-E2

sec 〈y, x〉 : A

y : B x : A
×-I

〈y, x〉 : B× A
×-E2

fst 〈y, x〉 : A
×-I

〈sec 〈y, x〉, fst 〈y, x〉〉 : A× B

41



Program evaluation example

y : B x : A
×-I

〈y, x〉 : B× A
×-E2

sec 〈y, x〉 : A

y : B x : A
×-I

〈y, x〉 : B× A
×-E2

fst 〈y, x〉 : A
×-I

〈sec 〈y, x〉, fst 〈y, x〉〉 : A× B
evaluates to

x : A y : B
×-I

〈x, y〉 : A× B
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Understanding?



Do you understand…

…the correspondence?

…how natural deduction describes semantics?

…how program generation could work?

…why computer science would use this over other
formulations?

…more than that?
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The punchline



The punchline

Plaque of the Pioneer
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The punchline

It would be a mistake to characterize lambda
calculus as universal, because calling it

universal would be too limiting.
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