Propositions as Types

Aaron McClellan and Dr. Philip Wadler

February 28, 2023

Intro

- State propositions as types
- Motivate, introduce theory of computation
- Introduce theory of logic
- Introduce natural deduction
- Introduce lambda calculus as a synonym of logic

Part 1

$Propositions \longleftrightarrow types$

Propositions \longleftrightarrow types Proofs \longleftrightarrow programs

Propositions \longleftrightarrow types Proofs \longleftrightarrow programs Simplification of proofs \longleftrightarrow evaluation of programs

David Hilbert in 1930

Hilbert's Entscheidungsproblem

An "effectively calculable" algorithm to prove all statements

prove all statements

Entscheidungsproblem

all statements

Entscheidungsproblem

Hilbert was vague and imprecise

Hilbert was vague and imprecise Church's lambda calculus in 1936 Gödel's recursive functions in 1936 Turing's Turing machines in 1937 Inductive construction of primitives (" λ -definable")

Evaluation represented as substitution rules ("normalization " to a "normal form")

Inductive construction of primitives (" λ -definable")

Evaluation represented as substitution rules ("normalization " to a "normal form")

Showed problems with no $\lambda\text{-definable solution i.e.}$ uncalculable/undecidable problems

Proposed λ -definable as definition for "effectively calculable"

Proposal eventually accepted

Inductive construction of primitives (" λ -definable")

Evaluation represented as substitution rules ("normalization " to a "normal form")

Showed problems with no $\lambda\text{-definable solution i.e.}$ uncalculable/undecidable problems

Proposed λ -definable as definition for "effectively calculable"

Proposal eventually accepted

Types introduced to guarantee termination

Gentzen introduced natural deduction

Logical rules come in pairs: introduction and elimination

Introduce $A \wedge B$ with proofs of A and B, eliminate by concluding A or B

Rules to simplify proofs \implies consistency

Subformula principle: proofs contain only what is necessary (not "roundabout")

$$sfp(A \land B) = \{A \land B\} \cup sfp(A) \cup sfp(B)$$

Used a roundabout proof for SFP in natural deduction

Roundabout proofs?

Introduced by Brouwer in early 1900s Generalization of classical logic

Predates ZFC...

...but not Russell's paradox

Disagreement about the nature of infinity

Proof of $A \lor B$ must show which of A or BLaw of excluded middle ($A \lor \neg A$) doesn't hold generally Proof by negation holds, proof by contradiction doesn't generally

 $(A \implies false) \implies \neg A \qquad (\neg A \implies false) \implies A$

- Simplifies teaching
- Easier to discern types
- Allows immediate program generation
- Introduces other systems of logic

- Simplifies teaching
- Easier to discern types
- Allows immediate program generation
- Introduces other systems of logic 👀

Extensions to propositions as types

 \forall and \exists quantifiers \longleftrightarrow dependent types Classical logic \longleftrightarrow continuation-passing style Second-order logic \longleftrightarrow second-order lambda calculus Higher-order logic \longleftrightarrow depends (Isabelle/HOL) Modal logic ("necessarily true" + "sometimes true") \longleftrightarrow monads (distributed computation, Haskell)

Temporal logic ("holds now", "will hold eventually", "will hold soon") \longleftrightarrow partial evaluation (computer engineering)

Linear logic (use assumptions exactly once) \longleftrightarrow linear types, session types (C++, quantum computing, communication)

Cartesian closed category \longleftrightarrow simply-typed lambda calculus (category theory, quantum physics)

Cartesian closed category $\leftrightarrow \rightarrow$ simply-typed lambda calculus (category theory, quantum physics) Topology $\leftrightarrow \rightarrow$ homotopy type theory

Part 2

Natural deduction

Logical formulas $(A \land B)$ will always blue... ...unless I'm using color to group things together

premise1 premise2 premise3 conclusion rule or logic

premise1 premise2 premise3 conclusion rule or logic

If the premises hold then we can conclude that the conclusion holds by some rule or logic.

& rules

Intuitive reading

Let's prove $B \wedge A \implies A \wedge B$.

Let's prove $B \wedge A \implies A \wedge B$.

$$\frac{[B \land A]^{z}}{A} \land -E_{2} \qquad \frac{[B \land A]^{z}}{B} \land -E_{1}$$
$$\frac{A \land B}{B \land A \implies A \land B} \quad \text{Imp-I}^{z}$$

Simplification rules

Proof simplification example

Left is the proof from earlier

Right is the machinery to use the implication

Proof simplification example

Simplification rules

Proof simplification example

Lambda calculus

Let L, M, N be lambda terms and x, y, z be variables

 $\Lambda := \mathbf{x} \mid \lambda \mathbf{x}.\mathbf{M} \mid \mathbf{MN}$

A system of functions (and later types); no sets

 $\Lambda := \mathbf{X} \mid \mathbf{\lambda} \mathbf{X}.\mathbf{M} \mid \mathbf{M} \mathbf{N}$

Variables are placeholders for lambda terms

Abstractions are functions with a variable as input f(x) = M or func f(x) { return M(); }

Applications start computation in M with N as input M(N)

Evaluation is applying all terms of the form $(\lambda x.M)N$

What does $\lambda x.x$ do?

What does $\lambda x.x$ do? Identity function What does $(\lambda x.xx)(\lambda x.xx)$ do?

What does $\lambda x.x$ do? Identity function What does $(\lambda x.xx)(\lambda x.xx)$ do? Hint: Let $M = \lambda x.xx$ and $N = \lambda x.xx$ What does $\lambda x.x$ do? Identity function What does $(\lambda x.xx)(\lambda x.xx)$ do? Hint: Let $M = \lambda x.xx$ and $N = \lambda x.xx$ Hint: $MN = M(\lambda x.xx)$ What does $\lambda x.x$ do? Identity function What does $(\lambda x.xx)(\lambda x.xx)$ do? Hint: Let $M = \lambda x.xx$ and $N = \lambda x.xx$ Hint: $MN = M(\lambda x.xx)$

 $(\lambda x.xx)(\lambda x.xx)$ expands to itself \implies infinite loop!

Solution to nontermination

Let A, B be types

Let $A \rightarrow B$ be function types

Solution to nontermination

Let A, B be types

Let $A \rightarrow B$ be function types

Function types \implies product types $A \times B$

Intuitive reading

 $egin{array}{c} \mathsf{A} o \mathsf{B} \ f: \mathsf{A} o \mathsf{B} \end{array}$

 $\begin{array}{c} \textbf{A} \times \textbf{B} \\ (\textbf{a} \in \textbf{A}, \textbf{b} \in \textbf{B}) \end{array}$

Append a type to every lambda term

M : A, read M has type A

$$\frac{M:A \quad N:B}{\langle M,N\rangle:A\times B} \times -I$$

$$\frac{L:A\times B}{fst \ L:A} \times -E_1 \qquad \frac{L:A\times B}{sec \ L:B} \times -E_2$$

Intuitive reading

[x : A]^x : N : B A variable x of type A is used to construct a term N of type B.

Let's create a program of type $B \times A \rightarrow A \times B$.

Let's create a program of type $B \times A \rightarrow A \times B$.

$$\frac{\frac{[z:B\times A]^{z}}{\sec z:A}\times -E_{2}}{\frac{fst z:B}{\sqrt{fst z:B}}\times -I}\times -E_{1}$$

$$\frac{\sqrt{\sec z, fst z}:A\times B}{\sqrt{z}.\langle \sec z, fst z\rangle:B\times A\to A\times B}\to -I^{z}$$

Evaluation rules

Intuitive reading

N[M/x]N with M replacing x.

$$\frac{\frac{[B \times A]^{z}}{\sec z : A} \times -E_{2} \qquad \frac{[B \times A]^{z}}{fst \, z : B} \times -E_{1}}{\langle \sec z, fst \, z \rangle : A \times B} \rightarrow -I^{z} \qquad \frac{y : B \qquad x : A}{\langle y, x \rangle : B \times A} \times -I}{\langle \lambda z. \langle \sec z, fst \, z \rangle) \langle y, x \rangle : A \times B} \rightarrow -E$$

Left is the program from earlier Right is the machinery to run the function

Program evaluation example

$$\frac{\begin{bmatrix} z:B \times A \end{bmatrix}^{z}}{\underbrace{\sec z:A}} \times -E_{2} \qquad \frac{\begin{bmatrix} z:B \times A \end{bmatrix}^{z}}{fst z:B} \times -I} \times -E_{1}$$

$$\frac{\langle \sec z, fst z \rangle : A \times B}{\langle z. \langle \sec z, fst z \rangle : B \times A \to A \times B} \rightarrow -I^{z} \qquad \frac{y:B \qquad x:A}{\langle y,x \rangle : B \times A} \rightarrow -E$$

$$(\lambda z. \langle \sec z, fst z \rangle) \langle y,x \rangle : A \times B$$

$$evaluates to$$

$$\frac{y:B \qquad x:A}{\langle y,x \rangle : B \times A} \times -I \qquad \frac{y:B \qquad x:A}{\langle y,x \rangle : B \times A} \times -I$$

$$\frac{y:B \qquad x:A}{\langle x,x \rangle : A \times B} \times -I \qquad \frac{y:B \qquad x:A}{\langle y,x \rangle : B \times A} \times -I$$

$$\frac{g:B \qquad x:A}{\langle y,x \rangle : B \times A} \times -I \qquad \frac{y:B \qquad x:A}{\langle y,x \rangle : B \times A} \times -I$$

$$\frac{g:B \qquad x:A}{\langle y,x \rangle : B \times A} \times -I \qquad \frac{y:B \qquad x:A}{\langle y,x \rangle : B \times A} \times -I$$

$$\frac{g:B \qquad x:A}{\langle y,x \rangle : A \times B} \times -I \qquad \frac{g:B \qquad x:A}{\langle y,x \rangle : A \times B} \times -I$$

Program evaluation example

$$\frac{y:B \quad x:A}{\langle y,x\rangle:B \times A} \times -I \qquad \frac{y:B \quad x:A}{\langle y,x\rangle:B \times A} \times -I \\ \frac{sec \langle y,x\rangle:A}{\langle sec \langle y,x\rangle, fst \langle y,x\rangle\rangle:A} \times -E_2 \qquad \frac{\langle y,x\rangle:B \times A}{fst \langle y,x\rangle:A} \times -E_2 \\ \frac{sec \langle y,x\rangle,fst \langle y,x\rangle\rangle:A \times B}{\langle x,y\rangle:A \times B} \times -I \\ \frac{sec \langle y,x\rangle,fst \langle y,x\rangle\rangle:A \times B}{\langle x,y\rangle:A \times B} \times -I \\ \frac{sec \langle y,x\rangle,fst \langle y,x\rangle}{\langle x,y\rangle:A \times B} \times -I \\ \frac{sec \langle y,x\rangle,fst \langle y,x\rangle}{\langle x,y\rangle:A \times B} \times -I \\ \frac{sec \langle y,x\rangle,fst \langle y,x\rangle}{\langle x,y\rangle:A \times B} \times -I \\ \frac{sec \langle y,x\rangle,fst \langle y,x\rangle}{\langle x,y\rangle:A \times B} \times -I \\ \frac{sec \langle y,x\rangle,fst \langle y,x\rangle}{\langle x,y\rangle:A \times B} \times -I \\ \frac{sec \langle y,x\rangle,fst \langle y,x\rangle,fst \langle y,x\rangle}{\langle x,y\rangle:A \times B} \times -I \\ \frac{sec \langle y,x\rangle,fst \langle y,x\rangle,fst$$

Understanding?

...the correspondence?

- ...the correspondence?
- ...how natural deduction describes semantics?
- ...how program generation could work?
- ...why computer science would use this over other formulations?

- ...the correspondence?
- ...how natural deduction describes semantics?
- ...how program generation could work?
- ...why computer science would use this over other formulations?
- ...more than that?

The punchline

The punchline

Plaque of the Pioneer

It would be a mistake to characterize lambda calculus as universal, because calling it universal would be *too limiting*.