Finitely Additive Probability Measures

Denote the power set $\mathscr{C}(\mathcal{I}) = \{A : A \subseteq \mathcal{I}\}.$ A f.a.p. (finitely additive probability) measure on IL is a map $\mu: \mathcal{B}(\mathbb{Z}) \rightarrow [0,1]$ such that $\mu(\emptyset)=0, \ \mu(\mathbb{Z})=1$ and $\mu(A_1 \sqcup A_2 \sqcup \cdots \sqcup A_n) = \mu(A_1) + \mu(A_2) + \cdots + \mu(A_n).$ Such a measure is translation-invariant if for all ASZ, xEZ, $\mu(A+x) = \mu(A)$ where $A+x = \{a+x : a \in A\}$. Goal: "construct" a translation-invariant f.a.p. measure on Z. (The same can be done for IR in place of Z. Or for any amenable group.)

We cannot have $\mu(\{a\}\})>0$, otherwise $\mu(\{1,2,3,\dots,n\}) = n\mu(\{a\}\})>1$ for n sufficiently large. So $\mu(\{a\}\})=0$ and $\mu(A)=0$ whenever $|A|<\infty$.

Ultrafilters

Warm-up: Let S be an infinite set. Look for a f.a.p. measure $\lambda: \mathcal{B}(S) \longrightarrow \{0, 1\}$. (No translation - invariance; S is just a set.) Every ASS is either an almost nowhere set $(\lambda(A) = 0)$ or an almost everywhere set $(\lambda(A)=1)$. The set $\mathcal{U} = \{A \subseteq S : \lambda(A) = 1\}$ is an ultrafilter : $(1) \quad \emptyset \notin \mathcal{U}, \quad \mathbf{S} \in \mathcal{U}$ (2) I is closed under finite intersections and supersets. (3) Whenever S = A, UA2 U… UAn, exactly one of A; ∈ U. How do we construct an ultrafilter? Trivial ("principal") ultrafiller: Fix s∈S and take U = EASS: s∈A3. AVOID THIS! We want a nonprincipal ultrafilter i.e. 21 contains no finite sets. So 21 contains every cofinite set S-A, $|A| < \infty$. The cofinite sets Form a filter F S P(S) satisfying (1), (2). By Zorn's Lemma, we extend $F \subseteq U$ where U is an ultra filter, necessarily non principal.

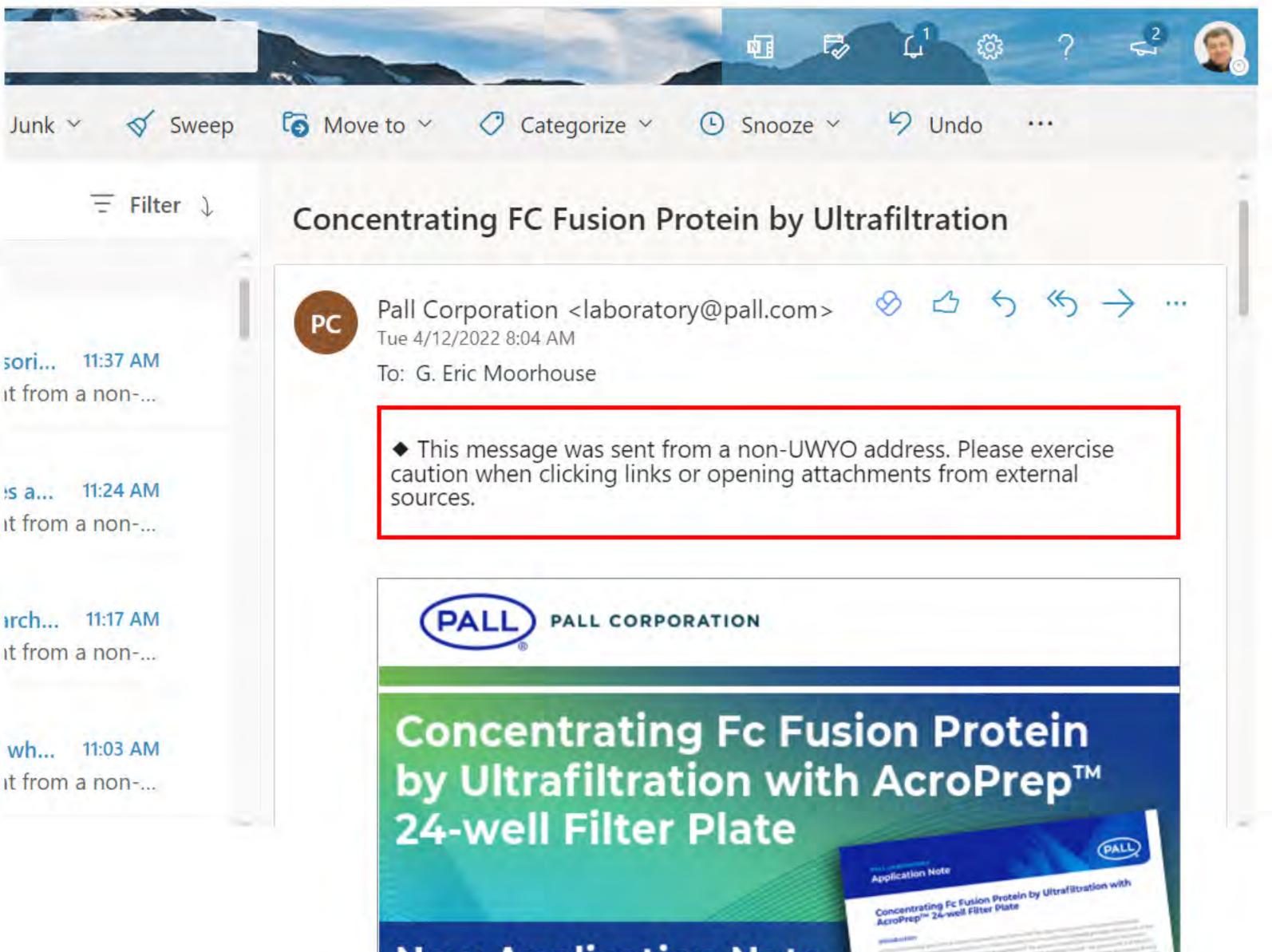
But an ultrafilter on Z cannot be translation - invariant. Every translation-invariant f.a.p. measure on Z has µ(evens) = µ(odds) = ½. A Better (?!) Notion of Limits

If (x_n) is a sequence in [a,b], then (x_n) has at least one limit point (cluster point, accumulation point) in [a,b]. One of these (which one?) is the λ -limit of (xn). Every bounded sequence (xn) has a λ -limit satisfying • If $x_n \to x$ then λ -lim $x_n = \lim x_n = x$. • λ -lim $(x_n + y_n) = \lambda$ -lim $x_n + \lambda$ -lim y_n • λ -lim $(x_n y_n) = (\lambda$ -lim $x_n)(\lambda$ -lim $y_n)$ • If $x_n \leq y_n$ then λ -lim $x_n \leq \lambda$ -lim y_n . To define the λ -limit, choose a nonprincipal ultrafitter \mathcal{U} on \mathbb{N} . λ -lim $x_n \leq L$ iff for all $\varepsilon > 0$, $\{n: x_n < L + \varepsilon\} \in \mathcal{U}$ λ -lim $x_n \geq L$ iff for all $\varepsilon > 0$, $\{n: x_n > L - \varepsilon\} \in \mathcal{U}$. There is a unique real number L satisfying both conditions.

A Translation. Invariant f.a.p. on Z Fix a nonprincipal ultra fitter \mathcal{U} on \mathbb{N} . Given $A \subseteq \mathbb{Z}$, define $\mu(A) = \lambda - \lim_{n \to \infty} \frac{|A \cap [-n, n]|}{n}$ $\mu(A) = \lambda - \lim_{n \to \infty} \frac{|A \cap [-n, n]|}{2n+1}$ This is a translation-invariant f.a.p. measure on Z. The sequence of subsets [-n,n] C I is a Følner sequence. Every amenable group has such a sequence.

Application

The Banach-Tarski Theorem (for balls in \mathbb{R}^3) bas no analogue in \mathbb{R}^1 or \mathbb{R}^2 .



New Application Note

New Application Note

Concentration FC fusion protein ultrafiltration with AcroPrep® 24-well filter plate

Hi G,

This application note describes the concentration of an FC fusion protein with AcroPrep® 24-well filter plates with 30K molecular weight cut-off Omega[™] ultrafiltration membrane. Processing was very reproducible with yields of 96-97%. The filter plates provided a reliable way of processing multiple samples in parallel. Download now to learn more.

Download Now

The Hyperseals

Consider the ring
$$\mathbb{R}^{\infty} = \{(a_1, a_2, a_3, a_4, \cdots) : a_i \in \mathbb{R}\}$$
 with
coordinatewise addition and multiplication. This is not a
field, but if we identify two sequences whenever they
agree almost everywhere (i.e. $(a_n) \simeq (b_n)$ whenever
 $\{n : a_n = b_n\} \in \mathbb{H}$) then we get the field extension
 $\widehat{\mathbb{R}} \supset \mathbb{R}$ of hyperreal numbers.

If (an) is bounded then A-liman is the standard part of (and, which is the unique real number closest to (an).