
Solutions to HW1

1. Every element u = a + bε ∈ R with a 6= 0 is a unit since it has inverse u−1 = a−bε
a2 .

No proper ideal contains a unit; if an ideal J contains a unit u then R = R1 =

Ruu−1 ⊆ Ju−1 ⊆ J forcing J = R. Thus every proper ideal satisfies J ⊆ (ε) where

(ε) = Rε = {bε : b ∈ F}. However, (ε) ⊂ R is an ideal since it is a principal ideal. In

order for the ideal J to be maximal, it must satisfy J = (ε).

2. Let f(X) ∈ F [X] be a polynomial of degree 2. Without loss of generality, f(X) is

monic; otherwise divide f(X) by its leading coefficient without changing the principal

ideal (f(X)) ⊂ F [X]. Now f(X) has 0, 1 or 2 distinct roots in F . Denote the quotient

ring R = F [X]/(f(X)).

If f(X) has no roots in F , then it is irreducible in F [X] so the ideal (f(X)) ⊂ F [X]

is maximal. This means that the quotient ring R is a field. Denoting α = X+(f(X)) ∈
R, every element of R is uniquely expressible as a + bα for some a, b ∈ F . (Simply

take an arbitrary coset g(X) + (f(X)) ∈ R and represent it by the remainder of g(X)

found after dividing by f(X). This remainder a + bX is unique.) Thus [R : F ] = 2

and so conclusion (ii) holds.

If f(X) has one double root in F then f(X) = (X − r)2 for some r ∈ F . Without

loss of generality r = 0. (The map F [X] → F [X + r], g(X) 7→ g(X + r) is a

ring isomorphism mapping the ideal ((X − r)2) to the ideal (X2).) In this case

R = F [X]/(X2). Denote ε = X+(X2) ∈ R. Every coset g(X)+(X2) ∈ R is uniquely

expressible as a+ bε where a, b ∈ F . (Again, find the remainder a+ bX of g(X) after

dividing by X2 to obtain the unique representative.) Now R is a two-dimensional

vector space over F with basis {1, ε} satisfying ε2 = 0. This gives case (iii).

Finally, suppose f(X) has two distinct roots in F , so f(X) = (X − r1)(X − r2) for

distinct roots ri ∈ F . Consider the ideals J1 = (X − ri) ⊂ F [X], i = 1, 2. Observe

that J1J2 = J1 ∩ J2 = (f(X)) ⊂ F [X]. It is easy to see that

(*) F [X]/(f(X)) = F [X]/(J1 ∩ J2) =
(
F [X]/J1

)
⊕
(
F [X]/J2

)
.

Indeed, the map φ : F [X] 7→
(
F [X]/J1

)
⊕
(
F [X]/J2

)
defined by g(X) 7→ (g(X) +

J1, g(X) + J2) is a ring homomorphism since each of the maps F [X]→ F [X]/Ji is a

ring homomorphism. Since the kernel of φ is J1J2 = J1 ∩ J2, the first isomorphism

theorem gives (*). Now use the fact that F [X]/Ji ∼= F (each X − ri is irreducible of

degree 1) to obtain case (i).
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3. (a) In this case f(x) = (x+ α+ β)(x− α− β)(x+ α− β)(x− α+ β) where α = i
√

2

and β = i
√

5. The splitting field of f(x) over Q is

E = Q(±α± β) = Q(α, β) = Q(α,
√

10)

since αβ = −
√

10. The extension K = Q(
√

10) ⊇ Q has degreee 2 since 10 is not

a perfect square in Q; and E = K(α) ⊇ K has degree 2 ([E : K] 6 2 since α is a

root of t2 + 2 ∈ K[t]; but [E : K] > 1 since K ⊂ R whereas α ∈ E is not real).

This shows that [E : Q] = 4. Since E is the splitting field of f(t) ∈ Q[t], E ⊃ Q
is Galois and hence |G| = [E : Q] = 4. Since every automorphism of E maps

α 7→ ±α and β 7→ ±β, the only possibility is G = {ι, σ, τ, στ}, a Klein 4-group

satisfying σ(α) = −α, σ(β) = β, τ(α) = α, τ(β) = −β.

(b) By Eisenstein’s Criterion (for the prime 2), f(x) is irreducible over Q. Note that

f(x) = (x+α)(x−α)(x+β)(x−β) where α =
√

2−
√

2 and β =
√

2 +
√

2; so f(x)

is the minimal polynomial over Q for each of its four roots. Since β = α(3−α2),

we have E = Q(α, β) = Q(α). Since E is the splitting field of f(x) over Q, the

extension E ⊃ Q is Galois of degree 4. Every g ∈ G maps α to one of the four

roots of f(x) and the choice of g(α) ∈ {±α,±β} uniquely determines g since α

generates the extension E ⊃ Q. Denote by σ ∈ G the unique automorphism

mapping α 7→ β; then

σ2(α) = σ(β) = σ
(
α(3− α2)

)
= β(3− β2) = −α;

σ3(α) = σ(−α) = −β

so G = 〈σ〉 = {ι, σ, σ2, σ3} is cyclic of order 4 where the generator σ cyclically

permutes the roots of f(x) as

α 7→ β 7→ −α 7→ −β 7→ α.

4. Suppose α ∈ Qp satisfies α2 + α+ 1 = 0. If c = ||α||p > 1 then

c2 = ||α2||p = ||−α− 1||p = max{c, 1},

which is impossible; so we must have ||α||p 6 1, i.e. α ∈ Zp. Now reducing the equation

α2 + α+ 1 = 0 mod p or mod p2, gives zeroes of X2 +X + 1 in Zp/pZp ∼= Z/pZ and

in Zp/p2Zp ∼= Z/p2Z. But we quickly check that X2 +X + 1 has no zeroes in Z/2Z,

Z/9Z or in Z/5Z; so there are no solutions in (a,b,c).

In (d), if we start with α0 = 2, a root of X2 + X + 1 in Z/7Z, then successive

iterations of Newton’s method give subsequent approximate roots in Q7:

α1 = 2 + 4·7 + 5·72 + 2·73 + 74 + 4·75 + 5·76 + 2·77 + · · · ;
α2 = 2 + 4·7 + 6·72 + 3·73 + 3·74 + 0·75 + 4·76 + 4·77 + · · · ;
α3 = 2 + 4·7 + 6·72 + 3·73 + 0·74 + 2·75 + 6·76 + 2·77 + · · · ;
α4 = 2 + 4·7 + 6·72 + 3·73 + 0·74 + 2·75 + 6·76 + 2·77 + · · ·
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using the iteration αi+1 = g(αi), g(α) = α − α2+α+1
2α+1 . From the last iteration, we

obtain an approximate root

2 + 4·7 + 6·72 + 3·73 + 0·74 = 1353,

correct to within 7−5 < 0.00006. Since the sum of the two roots is −1, the other root

is approximately −1354, also correct to the same accuracy. (The second root can be

rewritten in standard form as 75 − 1354 = 15453 = 4 + 2·7 + 0·72 + 3·73 + 6·74, again

correct to within 7−5.)

5. Writing ζ = eπi/6 = cos π6 + i sin π
6 = 1

2

(
i+
√

3
)
, it is easy to check that ζ is a root of

f(x) = x4 − x2 + 1. Similarly, each of ζ, ζ5, ζ7, ζ11 is a root of f(x) so

f(x) = x4 − x2 + 1 = (x− ζ)(x− ζ5)(x− ζ7)(x− ζ11).

Denote the splitting field of this polynomial by E = Q(ζ, ζ5, ζ7, ζ11) = Q(ζ). Note

that E contains ζ+ζ11 = 2 cos π6 =
√

3. Since ζ /∈ R and
√

3 is real irrational, we have

proper containments E ⊃ Q[
√

3] ⊃ Q and so [E : Q] =
[
E : Q[

√
3]
][
Q[
√

3] : Q
]
> 4.

On the other hand, [E : Q] 6 4 since E = Q[ζ] where ζ is a root of the polynomial

f(x) ∈ Z[x] of degree 4. Thus [E : Q] = 4 and f(x) is the minimal polynomial of ζ

over Q. Moreover since E is the splitting field of f(x) over Q, the extension E ⊃ Q
is Galois and its Galois group G has order 4. We may write G = {ι, ρ, σ, τ} where

ρ(ζ) = ζ5, σ(ζ) = ζ7 and τ(ζ) = ζ11 and ι(ζ) = ζ. Note that ρ2(ζ) = ζ25 = ζ,

σ2(ζ) = ζ49 = ζ and τ2(ζ) = ζ121 = ζ so ρ2 = σ2 = τ2 = ι, i.e. G is a Klein 4-group.

Also note that ρ(σ(ζ)) = ζ35 = ζ11 so ρσ = τ . Now ρ fixes ζ + ζ5 = i; σ fixes

ζ·ζ7 = ζ8 = 1
2

(
1−
√
−3
)
; and τ fixes ζ + ζ11 =

√
3. Each of these last three elements

of E is quadratic irrational and therefore generates the fixed field of the corresponding

automorphism. Now the subgroups of G and the subfields of E are pictured in the

lattice diagrams

〈ι〉

〈ρ〉 〈σ〉 〈τ〉
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where the Galois correspondence is given by G ↔ Q, 〈ι〉 ↔ E, 〈ρ〉 ↔ Q[i], 〈σ〉 ↔
Q[
√
−3], 〈τ〉 ↔ Q[

√
3]. (I have used double lines to indicate normality.)

6. There was a misprint in the hint given for this problem (the formula for bj did not

appear correctly). The actual question was however stated correctly; and the exact

form of the bj was not important in the solution, only the fact that bj ∈ O). In any
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case, I have chosen a different presentation here to highlight an interesting general-

ization of Taylor expansion, made possible by replacing ordinary derivatives by Hasse

derivatives. (Recall that the familiar form of Taylor expansion requires denominators

k! which are not permitted in prime characteristic.) Also in the online copy of the

homework assignment, I rewrote the hint accordingly.

Given f(X) =
∑d
i=0 aiX

i ∈ F [X] and k > 0, the kth Hasse derivative of f(X) is the

polynomial

f [k](X) =
d−k∑
i=0

(
k + i

i

)
ak+iX

i ∈ F [X].

Observe the following:

(i) If f(X) ∈ O[X] then f [k](X) ∈ O[X].

(ii) The usual k-th derivative satisfies

f (k)(X) = k!f [k](X) =
d−k∑
i=0

(i+1)(i+2) · · · (i+k)ak+iX
i.

If F has characteristic zero then we can solve for f [k](X) = 1
k!f

(k)(X); however

if p = charF is prime then f (k)(X) = 0 whenever k > p and so f [k](X) can-

not be recovered from f (k)(X); in general the polynomial f [k](X) contains more

information not found in the usual derivatives.

(iii) For k = 1, our modified ‘derivative’ coincides with the usual derivative, using the

argument in (ii): f [1](X) = f (1)(X) = f ′(X) =
∑d−1
i=0 (i+1)ai+1X

i.

(iv) We easily obtain the identity

f(X+δ) = f(X) + δf ′(X) + δ2f [2](X) + δ3f [3](X) + · · ·+ δdf [d](X)

by using the Binomial Theorem to expand each term of f(X+δ) =
∑
i ai(X+δ)i.

This identity easily generalizes to more general series f(X) ∈ F [[X]], giving a more

general form of Taylor expansion valid in arbitrary characteristic.

Now suppose f(X) ∈ O[X], and α0 ∈ O satisfies ||f(α0)|| < ||f ′(α0)||2. We will

recursively define the sequence of approximate roots

αn+1 = αn + δn where δn = − f(αn)

f ′(αn)

for n > 0. The first step in this recursion uses δ = δ0 = − f(α0)
f ′(α0)

. (Our hypothesis

guarantees that ||f ′(α0)|| > 0 so that δ is well-defined.) Note that

||δ|| = ||f(α0)||
||f ′(α0)|| = ||f(α0)||

||f ′(α0)||2 ||f
′(α0)|| < ||f ′(α0)|| 6 1
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using the hypothesis ||f(α0)|| < ||f ′(α0)||2 and f ′(α0) ∈ O[α0] ⊆ O. In particular,

α1 = α0 + δ ∈ O. By (iv),

f(α1) = f(α0+δ) = f(α0) + δf ′(α0) + δ2ε = δ2ε

where ε ∈ O, so

||f(α1)|| 6 ||δ||2 =
||f(α0)||2

||f ′(α0)||2
.

In particular ||f(α1)|| = ||f(α0)||
||f ′(α0)||2 ||f(α0)|| < ||f(α0)|| which gives (a). Before we can

proceed inductively, we first apply (iv) to the polynomial f ′(X) ∈ O[X] (in place of

f(X)) to observe that

f ′(α1) = f ′(α0+δ) = f ′(α0)+δε̃

for some ε̃ ∈ O, where

||δε̃|| 6 ||δ|| = ||f(α0)||
||f ′(α0)||2 ||f

′(α0)|| < ||f ′(α0)||

so the ultranorm inequality gives

||f ′(α1)|| = ||f ′(α0) + δε̃|| = ||f ′(α0)||.

Now putting together three of the relations above,

||f ′(α1)|| 6 ||f(α0)||2

||f ′(α0)||2
<
||f ′(α0)||4

||f ′(α0)||2
= ||f ′(α0)||2 = ||f ′(α1)||2.

Thus α1 satisfies all the same assumptions made for α0. We may iterate the map

αn 7→ αn+1 and inductively apply the results above at every step. In particular we

have ||f ′(αn)|| = · · · = ||f ′(α1)|| = ||f ′(α0)|| and

||f(αn+1)|| 6 ||δn||2 =
||f(αn)||2

||f ′(αn)||2
=
||f(αn)||2

||f ′(α0)||2

which establishes (b).

Now let c = ||f ′(α0)|| and k = ||f(α0)||/c2. Recall that ||f ′(αn)|| = c > 0 for all n;

also k < 1. An easy induction shows that

(†) ||f(αn)|| 6 c2k2
n

for all n > 0.

Indeed, ||f(α0)|| = c2k2 giving equality for n = 0; and assuming (†) holds at iteration n,

then as we have seen,

||f(αn+1)|| 6 ||f(αn)||2

c2
6

(c2k2
n

)2

c2
= c2k2

n+1
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and so (†) holds also at iteration n+1. A consequence of (†) is

||αn+1 − αn|| = ||δn|| =
||f(αn)||
||f ′(αn)||

6
c2k2

n

c
= ck2

n

and so if m > n > 0 then

||αm − αn|| = ||(αm−αm−1) + (αm−1−αm−2) + · · ·+ (αn+1−αn)||

6 max{ck2
m−1

, ck2
m−2

, . . . , ck2
n

} = ck2
n

.

This shows that the sequence α0, α1, α2, . . . ∈ O is Cauchy, verifying (c). Since O is

complete, we have α = limn→∞ αn ∈ O. Since f(X) ∈ O[X] is a polynomial, it is

continuous and f(α) = limn→∞ f(αn) = 0 where this limit follows from (†).

7. (a) Let θ = α+ α2. Then

θ3 = α3 + 3α4 + 3α5 + α6 = 2 + 6α+ 6α2 + 4 = 6 + 6θ

so θ is a root of f(t) = t3 − 6t − 6 ∈ Z[t]. By Eisenstein’s criterion (with either

prime 2 or 3), f(t) is irreducible in Q[t] so it is the minimal polynomial of θ

over Q.

(b) Let α =
√

2 +
√

3 +
√

5. With some computational help from Maple, we find that

f(α) = 0 where

f(x) = x8 − 40x6 + 352x4 − 960x2 + 576 ∈ Z[x].

To show that f(x) is the minimal polynomial of α over Q, we must show that it

is irreducible in Z[x] (and hence also irreducible in Q[x]).

Here is a silly argument (I say silly because it uses Maple to jump through

lots of unnecessary hoops) but it works. Suppose on the contrary that f(x) =

g(x)h(x) where each of the factors g(x), h(x) ∈ Z[x] is monic of degree > 2.

It is easy to see that f(x) > 0 for every x > 6 (in fact a little calculus shows

that f(x) represents an increasing function on this interval). It follows that both

g(x) and h(x) are positive for x > 6. Now f(11) = 148534489 is prime, so

{g(11), h(11)} = {1, 148534489}. Similarly, f(m) is prime for at least 63 distinct

values of m (such values m = 11, 13, 31, 35, . . . , 991 are easily found using Maple).

This means that at least one of the polynomials g(x), h(x), say g(x), assumes the

value g(m) = 1 for at least 32 integer values of m > 11. But this is impossible:

since deg g(x) ∈ {2, 3, 4, 5, 6}, g(x) can assume any one value at most 6 times.
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Here is a more conventional argument that accomplishes the same goal. Let

E = Q(α). Clearly E ⊆ Q(
√

2,
√

3,
√

5). To verify the reverse containment

Q(
√

2,
√

3,
√

5) ⊆ E, one routinely checks (using Maple) that

√
2 = 1

576

(
α7 − 28α5 − 56α3 + 960α

)
;

√
3 = − 1

96

(
α7 − 37α5 + 244α3 − 360α

)
;

√
5 = 1

576

(
5α7 − 194α5 + 120α3 − 2544α

)
.

(In fact, each of these relations was found by using Maple to solve a system of 8

linear equations in 8 unknown coefficients.) Thus Q(
√

2,
√

3,
√

5) = E. Note that

E = K(
√

5) ⊇ K = Q(
√

2,
√

3). To save time, I will make use of the fact (which

we have previously shown in class) that K ⊃ Q is Galois of degree 4. It suffices

to show that
√

5 /∈ K, as this will force [E : K] = 2 and [E : Q] = 8, whence α is

algebraic of degree 8 over Q and f(x) is its minimal polynomial. Suppose that,

on the contrary,
√

5 = a + b
√

2 + c
√

3 + d
√

6 ∈ K where a, b, c, d ∈ Q. Recall

that K has 4 automorphisms, one of which is a map σ fixing
√

3 and mapping√
2 7→ −

√
2, also

√
6 7→ −

√
6. Now σ(

√
5) = ±

√
5 since these are the only roots

of the polynomial t2 − 5 ∈ Z[x], so either

a+ b
√

2 + c
√

3 + d
√

6 =
√

5 = σ(
√

5) = a− b
√

2 + c
√

3− d
√

6

or

a+ b
√

2 + c
√

3 + d
√

6 =
√

5 = −σ(
√

5) = −a+ b
√

2− c
√

3 + d
√

6.

In the first case,
√

5 = a + c
√

3; in the second case,
√

5 = b
√

2 + d
√

6. Both of

these yield contradictions: in the first case we repeat the argument above with

a Galois automorphism of Q[
√

3] to get ±
√

5 = a − c
√

3 whence
√

5 ∈ {a, c
√

3}
which is impossible; the second case takes the form

√
10 = 2b + 2c

√
6 ∈ Q[

√
6]

leading to a similar contradiction.

Remarks: The latter argument shows the beginning of an inductive proof

that if pn is the nth prime, then
√

2 +
√

3 +
√

5 + · · ·+
√
pn is algebraic of degree

2n over Q. Some shortcuts are possible in our proof above: in particular it is

immediate that all our coefficients a, b, c, d ∈ Q above are either integers or half-

integers, using the integrality of
√

5. However we had not yet discussed algebraic

integers at the time when this homework was assigned.

(c) Denote α = sin 2π
7 and ζ = e2πi/7, so that

0 = 1 + ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6;

2iα = ζ − ζ−1;

−4α2 = ζ2 − 2 + ζ−2;

16α4 = ζ4 − 4ζ2 + 6− 4ζ−2 + ζ−4;

−64α6 = ζ6 − 6ζ4 + 15ζ2 − 20 + 15ζ−2 − 6ζ−4 + ζ−6.
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Add row 5, plus 7 times row 4, plus 14 times row 3, and subtract row 1; since

ζ7 = 1 this gives

−64α6 + 112α4 − 56α2 = −7.

Thus α is a root of f(x) = 64x6−112x4+56x2−7 ∈ Z[x]. By Eisenstein’s criterion

(using the prime 7), f(x) is irreducible in Q[x]. Thus the minimal polynomial of

α over Q is
1
64f(x) = x6 − 7

4x
4 + 7

8x
2 − 7

64 .
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