

Finite Extension Fields

Let F be a field, and F[t] the ring of polynomials in an indeterminate t with coefficients in F. Let $f(t) \in F[t]$ be a polynomial of degree $n \ge 1$. Recall that f(t) is reducible in F[t] if it factors as f(t) = g(t)h(t) where $g(t), h(t) \in F[t]$ have degree $\in \{2, 3, ..., n-1\}$; otherwise, f(t) is irreducible in F[t] (and we say simply that f(t) is irreducible over F).

From our prior study of ring theory, we know that the ideal $(f(t)) \subset F[t]$ is maximal; therefore the quotient ring E = F[t]/(f(t)) is a field. This new field is an extension of F of degree n; in other words, it is an n-dimensional vector space over F. This extension field has the form $E = F[\theta]$ where $\theta = t + (f(t))$ is a root of f(t) in E (not in F, unless n = 1). Formally, we have extended F to a new field E containing a root of f(t). We have

$$F[\theta] = \{g(\theta) : g(t) \in F[t]\}.$$

The notation $E = F[\theta]$ reminds us that elements of E are obtained by evaluating polynomials $g(t) \in F[t]$ at θ ; the evaluation map

$$F[t] \to F[\theta], \quad g(t) \mapsto g(\theta)$$

is a ring homomorphism. By the Division Algorithm, every $g(t) \in F[t]$ may be uniquely expressed in the form

$$g(t) = q(t)f(t) + r(t) \qquad \text{where } q(t), r(t) \in F[t], \ \deg r(t) < n.$$

Since $g(\theta) = q(\theta)f(\theta) + r(\theta) = r(\theta)$, we see that only polynomials of degree less than n are required to construct E:

$$F[\theta] = \{a_0 + a_1\theta + a_2\theta^2 + \dots + a_{n-1}\theta^{n-1} : a_0, a_1, \dots, a_{n-1} \in F\}.$$

One sometimes writes

$$E = F(\theta) = \left\{ \frac{g(\theta)}{h(\theta)} : g(t), h(t) \in F[t], \ h(\theta) \neq 0 \right\}$$

to indicate that E is a quotient field; but since $F[\theta]$ is already closed under division, we have $F(\theta) = F[\theta]$ and this extra notation serves only for emphasis¹.

Example 1

Suppose that $d \in F$ is not a square in F, i.e. the polynomial $t^2 - d \in F[t]$ is irreducible over F. Then we obtain an extension field

$$E = F[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in F\}.$$

This is a quadratic extension of F, i.e. an extension of degree 2. In odd characteristic, every quadratic extension has this form.

Example 2

We wish to construct \mathbb{F}_4 as a quadratic extension of \mathbb{F}_2 . Since every element of \mathbb{F}_2 is a square, we cannot use the method of Example 1. The unique irreducible polynomial of degree 2 over \mathbb{F}_2 is given by $f(t) = t^2 + t + 1$. Denote by θ a root of f(t); then

$$F_4 = \mathbb{F}_2[\theta] = \{0, 1, \theta, \theta + 1\}$$

where $\theta^2 = \theta + 1$.

Example 3

An algebraic number field is a finite extension of \mathbb{Q} , i.e. an extension of the form $\mathbb{Q}(\theta) \supseteq \mathbb{Q}$ where θ is algebraic over \mathbb{Q} . For example, consider the polynomial

$$f(t) = t^3 + t^2 - 3t - 1 \in \mathbb{Q}[t]$$

This polynomial is irreducible over \mathbb{Q} by the Rational Root Theorem (check that ± 1 are not roots of f(t)). Now f(t) has a root in the cubic extension field

$$\mathbb{Q}[\theta] = \left\{ a + b\theta + c\theta^2 : a, b, c \in \mathbb{Q} \right\}$$

¹ By contrast, the element $\pi \in \mathbb{R}$ is not a root of any nonzero polynomial in $\mathbb{Q}[t]$; so $\mathbb{Q}[\pi] \neq \mathbb{Q}(\pi)$. In this case $\mathbb{Q}[\pi]$ is a subring of \mathbb{R} and $\mathbb{Q}(\pi)$ is its field of quotients: $\mathbb{Q}[\pi] \subset \mathbb{Q}(\pi) \subset \mathbb{R}$.

where

$$\begin{aligned} \theta^3 &= -\theta^2 + 3\theta + 1; \\ \theta^4 &= -\theta^3 + 3\theta^2 + \theta \\ &= (\theta^2 - 3\theta - 1) + 3\theta^2 + \theta \\ &= 4\theta^2 - 2\theta - 1; \end{aligned}$$

etc. For example, consider the elements $\alpha, \beta \in \mathbb{Q}[\theta]$ given by

$$\alpha = 2\theta^2 + \theta - 3;$$
 $\beta = \theta^2 - 5\theta - 2.$

We have

$$\begin{aligned} \alpha + \beta &= 3\theta^2 - 4\theta - 5; \\ \alpha \beta &= (2\theta^2 + \theta - 3)(\theta^2 - 5\theta - 2) \\ &= 2\theta^4 - 9\theta^3 - 12\theta^2 + 13\theta + 6 \\ &= 2(4\theta^2 - 2\theta - 1) - 9(-\theta^2 + 3\theta + 1) - 12\theta^2 + 13\theta + \\ &= 5\theta^2 - 18\theta - 5. \end{aligned}$$

6

Inverses of elements in $\mathbb{Q}[\theta]$ may sometimes be found by inspection, e.g. dividing both sides of

$$1 = \theta^3 + \theta^2 - 3\theta$$

by θ gives

$$\frac{1}{\theta} = \theta^2 + \theta - 3.$$

But for more general cases, we may use the extended Euclidean algorithm, in just the same way as in the finite field \mathbb{F}_p . For example let us compute α/β for the values of $\alpha, \beta \in \mathbb{Q}[\theta]$ chosen above. We first find $1/\beta$ using the extended Euclidean Algorithm. Since $\beta = g(\theta) \neq 0$ where $g(t) = t^2 - 5t - 2$ and f(t) is irreducible, g(t) is not divisible by f(t) and gcd(f(t), g(t)) = 1. We therefore find polynomials $u(t), v(t) \in \mathbb{Q}[t]$ such that u(t)f(t) + v(t)g(t) = 1, using elementary row operations:

	f(t)	g(t)	
	1	0	$t^3 + t^2 - 3t - 1$
	0	1	$t^2 - 5t - 2$
	1	-t - 6	29t + 11
$\frac{15}{84}$	$\frac{56}{41} - \frac{1}{29}t$	$\frac{1}{29}t^2 + \frac{18}{841}t - \frac{95}{841}$	$\frac{34}{841}$
_	$\frac{29}{34}t + \frac{78}{17}$	$\frac{29}{34}t^2 + \frac{9}{17}t - \frac{95}{34}$	1

The last row expresses the desired relation

$$\left(-\frac{29}{34}t + \frac{78}{17}\right)f(t) + \left(\frac{29}{34}t^2 + \frac{9}{17}t - \frac{95}{34}\right)g(t) = 1.$$

Evaluating at θ and using the defining relation $f(\theta)=0$ gives

$$1/\beta = \frac{29}{34}\theta^2 + \frac{9}{17}\theta - \frac{95}{34}.$$

Finally,

$$\begin{aligned} \alpha/\beta &= \left(2\theta^2 + \theta - 3\right) \left(\frac{29}{34}\theta^2 + \frac{9}{17}\theta - \frac{95}{34}\right) \\ &= \frac{29}{17}\theta^4 + \frac{65}{34}\theta^3 - \frac{259}{34}\theta^2 - \frac{149}{34}\theta + \frac{285}{34} \\ &= \frac{29}{17} \left(4\theta^2 - 2\theta - 1\right) + \frac{65}{34} \left(-\theta^2 + 3\theta + 1\right) - \frac{259}{34}\theta^2 - \frac{149}{34}\theta + \frac{285}{34} \\ &= -\frac{46}{17}\theta^2 - \frac{35}{17}\theta + \frac{146}{17}. \end{aligned}$$

Let us check these results using $\mathsf{Maple:}$

C:\Users\moorhous\Documents\Courses\4520\numfield.mw - [Server 2] - Maple 17				
File Edit View Insert Format Table Drawing Plot Spreadsheet Tools Window Help				
	o o °≹			
*Untitled (1) 🔊 numfield.mw 😒				
Text Math Drawing Plot Animation	Hide			
$\textcircled{C} Maple Input \bigtriangledown \fbox{Courier New} \checkmark 12 \textcircled{B} I \underbar{U} \fbox{E} \equiv \exists \qquad \fbox{H} \fbox{I} \equiv \frac{1}{3} \equiv$				
> theta:=RootOf(t^3+t^2-3*t-1);	^			
$\theta := RootOf(Z^3 + Z^2 - 3Z - 1)$	(1)			
> alpha:=2*theta^2+theta-3; beta:=theta^2-5*theta-2;				
$\alpha := 2 \operatorname{Root}Of(Z^3 + Z^2 - 3 Z - 1)^2 + \operatorname{Root}Of(Z^3 + Z^2 - 3 Z - 1) - 3$				
$\beta := RootOf(Z^3 + Z^2 - 3Z - 1)^2 - 5RootOf(Z^3 + Z^2 - 3Z - 1) - 2$	(2)			
> alpha+beta;				
$3 \operatorname{Root}Of(Z^{3} + Z^{2} - 3Z - 1)^{2} - 4 \operatorname{Root}Of(Z^{3} + Z^{2} - 3Z - 1) - 5$	(3)			
<pre>> simplify(alpha*beta);</pre>				
$\int RootOf(Z^3 + Z^2 - 3Z - 1)^2 - 18 RootOf(Z^3 + Z^2 - 3Z - 1) - 5 $ (4)				
> simplify(1/beta);				
$\left[\frac{29}{34} \operatorname{RootOf}(Z^3 + Z^2 - 3Z - 1)^2 + \frac{9}{17} \operatorname{RootOf}(Z^3 + Z^2 - 3Z - 1) - \frac{95}{34} \right] $ (5)				
> simplify(alpha/beta);				
$-\frac{46}{17} \operatorname{RootOf}(Z^3 + Z^2 - 3Z - 1)^2 - \frac{35}{17} \operatorname{RootOf}(Z^3 + Z^2 - 3Z - 1) + \frac{146}{17}$	(6)			
Ready C:\Program Files\Maple 17 Memory: 4.18M Time: 0.01s	Text Mode			