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Finite Extension Fields

Let F be a field, and F[t] the ring of polynomials in an indeterminate ¢ with coefficients
in F. Let f(t) € F[t] be a polynomial of degree n > 1. Recall that f(t) is reducible in
F[t] if it factors as f(t) = g(t)h(t) where g(t), h(t) € F[t] have degree € {2,3,...,n—1};
otherwise, f(t) is irreducible in F[t] (and we say simply that f(t) is irreducible over F).
From our prior study of ring theory, we know that the ideal (f(t)) C F[t] is maximal;
therefore the quotient ring F = F'[t] / ( f (t)) is a field. This new field is an extension of
F' of degree n; in other words, it is an n-dimensional vector space over F. This extension
field has the form E = F[f] where § = ¢ + (f(t)) is a root of f(¢) in E (not in F, unless

n = 1). Formally, we have extended F' to a new field F containing a root of f(t). We have

Fo] = {g(0) : g(t) € Ft]}.

The notation E' = F[f] reminds us that elements of E are obtained by evaluating polyno-

mials g(t) € F[t] at 0; the evaluation map
F[t] = F[6],  g(t) — g(6)

is a ring homomorphism. By the Division Algorithm, every ¢(t) € F[t] may be uniquely

expressed in the form
g(t) = qt)f(t) +r(t) where ¢q(t),r(t) € F[t], degr(t) < n.

Since g(6) = q(0) f(0) +1r(6) = r(0), we see that only polynomials of degree less than n are

required to construct E:
F[0] = {ao +a10+ag0?+ - 4+a,_10"' :ap,a1,...,an_1 € F}

One sometimes writes



to indicate that E is a quotient field; but since F[f] is already closed under division, we

have F(§) = F[f] and this extra notation serves only for emphasis!.
Example 1

Suppose that d € F is not a square in F, i.e. the polynomial t*> — d € F|[t] is irreducible

over I'. Then we obtain an extension field
E=Fd = {a-l—b\/a ca,be F}.

This is a quadratic extension of F, i.e. an extension of degree 2. In odd characteristic,

every quadratic extension has this form.
Example 2

We wish to construct Fy as a quadratic extension of Fy. Since every element of Fy is a
square, we cannot use the method of Example 1. The unique irreducible polynomial of
degree 2 over Fs is given by f(t) = t2 +t + 1. Denote by 6 a root of f(¢); then

Fy=TF,00] = {0, 1, 0, 6+1}
where 6% = 6 + 1.
Example 3

An algebraic number field is a finite extension of Q, i.e. an extension of the form Q(0) 2 Q

where 6 is algebraic over Q. For example, consider the polynomial
ft) =1t +¢* -3t —1€Qlt.

This polynomial is irreducible over Q by the Rational Root Theorem (check that +1 are
not roots of f(¢)). Now f(¢) has a root in the cubic extension field

Q0] = {a+bb+cb* : a,b,c € Q}

1 By contrast, the element 7 € R is not a root of any nonzero polynomial in Q[t]; so Q[n] # Q(x). In this
case Q[n] is a subring of R and Q(m) is its field of quotients: Q[x] C Q(x) C R.



where
03 = —07 +30 +1;

0t = —6° + 36>+ 6
= (0> —30—1)+30>+0
= 40% — 20 — 1;
etc. For example, consider the elements «, 5 € Q[f] given by
a=20%+6-3; B =6%—50—2.
We have
a+=360%—-40 —5;
aff = (20% 4+ 0 — 3)(* — 50 — 2)
= 20* — 96 — 120% + 130 + 6
= 2(460%—20—1) — 9(—6°+360+1) — 126° 4+ 130 + 6
= 50% — 186 — 5.
Inverses of elements in Q[f] may sometimes be found by inspection, e.g. dividing both sides
of
1=6°+6°—30
by 6 gives
1
—=0*+0-3.
0 +
But for more general cases, we may use the extended Euclidean algorithm, in just the
same way as in the finite field F,. For example let us compute a/f for the values of
a,B € Q[f] chosen above. We first find 1/ using the extended Euclidean Algorithm.
Since 8 = g(0) # 0 where g(t) = t* — 5t — 2 and f(t) is irreducible, g(t) is not divisible
by f(t) and ged(f(t),g(t)) = 1. We therefore find polynomials u(t),v(t) € Q[t] such that
u(t)f(t) + v(t)g(t) = 1, using elementary row operations:

f(t) g(t)

1 0 412 -3t—1

0 1 t2 — 5t —2

1 —t—6 20t + 11
sit — 3t asto +sdrt — sar S
¥+ B 224 58 1

The last row expresses the desired relation
(=2t + B)ft)+ (B2 + 2t — P)g(t) = 1.

3



Evaluating at 6 and using the defining relation f(6) = 0 gives
1/8 = 26+ 20— 2

Finally,
af/Bf=(20+0-3) (36> + 20— 2)
_ 2294_+_§§93__ 2§202 1499_+_285
= 3—2(492—29—1) + 82 (—0%43041) — 22207 — 120 + 25
_ _411_392 9_|_ 146

Let us check these results using Maple:
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[> theta:=RootOf (£*3+£42-3%t-1) ; -
8:=RootOf| Z+ Z22—3 z—1) o))

=> alpha:=2*theta®2+theta-3; beta:=theta®2-5*theta-2;
2
a=2Rootof( Z+ Z—3 Z—1) +Rootof( 22+ Z2—3 2—1) -3
2
B:=Rootof( Z+ Z2—3 Z—1) —5Reatof( Z+ 2 —3 z—1) -2 @)
> alphatbeta;

3RootOf( 2+ 73 Z—1)" —4RootOf( £+ 2 -3 Z—1) 5 3
> simplify (alpha*beta) ;
sRootOf( 2+ 73 2—1) —18RootOf( B+ 23 2—1)—5 )
> simplify (1/beta) ;
%Rmraj{_23+_23—3_z—1] +—Rme‘0f[ P z—1]—— (3)
> sj_mplify[alphafbeta] ;
RoorOf(Zs—l- 7 ey z—1]— RoorOf(Za—l— Zan z—1]+% ©)
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