
Algebraic and Transcendental Elements

Let F ⊆ E be an extension of fields, and let θ ∈ E. Consider the ‘evaluation map’

F [t]→ E, g(t) 7→ g(θ).

This is clearly a ring homomorphism; and by definition, its image is the subring

F [θ] = {g(θ) : g(t) ∈ F [t]} ⊆ E.

The kernel of the evaluation map is an ideal in the polynomial ring F [t]. However, F [t] is

a principal ideal ring (i.e. every ideal is principal) so by the First Isomorphism Theorem

for Rings,

F [t]/
(
f(t)

) ∼= F [θ] ⊆ E

where every g(t) ∈ F [t] satisfies

g(θ) = 0 ⇐⇒ f(t)
∣∣ g(t) ⇐⇒ g(t) = m(t)f(t) for some m(t) ∈ F (t).

The principal ideal
(
f(t)

)
generated by f(t) is the set of all multiples of f(t); this is the

set of all polynomials having θ as a root. We have two cases:

Case (i): f(t) = 0. This says that θ is not a root of any nonzero polynomial g(t) ∈ F [t]; we

say that θ is transcendental over F . (It may be shown, for example, that the well-known

constants π, e ∈ R are transcendental over Q. I will distribute a handout containing proofs

of these facts, although we won’t cover all details in class.) In this case our isomorphism

reduces to

F ⊂ F [θ] ⊂ E and F [θ] ∼= F [t].

Note that F [θ] ∼= F [t] is a ring but not a field; this is why each of the containments in

F ⊂ F [θ] ⊂ E is proper. In fact, F [θ] ∼= F [t] is an integral domain and its field of quotients

is the subfield F (θ). So we have

F ⊂ F [θ] ⊂ F (θ) ⊂ E.

Case (ii): f(t) has degree n > 1. We may assume f(t) is monic; otherwise divide f(t) by

its leading coefficient. In this case we say θ is algebraic of degree n over F , and f(t) is the

minimal polynomial of θ over F . By the Division Algorithm,

F [t]/
(
f(t)

) ∼= F [θ] = {a0+a1θ+a2θ
2+ · · ·+an−1θ

n−1 : ai ∈ F} ⊆ E.
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In this case F [θ] is actually a subfield of E, and we have a tower of extension fields

F ⊆ F [θ] = F (θ) ⊆ E.

Here [F [θ] : F ] = n since {1, θ, θ2, . . . , θn−1} is a basis for F [θ] over F .

The arguments above require that we recognize when a polynomial is irreducible. For

a polynomial f(t) of degree n over a finite field F , this can be done by simply enumerating

reducible polynomials of degree n, of which there is certainly only a finite number. Moreover

for an arbitrary ground field F , if n ∈ {2, 3} then it suffices to check that f(t) ∈ F [t] has

no roots in F . It is helpful to have more general techniques for verifying irreducibility of

f(t). The following is very helpful when working over the ground field Q:

Theorem. Let f(t) ∈ Z[t]. If f(t) is irreducible over Z, then f(t) is irreducible

over Q.

This is a standard result from ring theory1.

Example 1. Consider α =
√

2 +
√

3 ∈ R. It is easy to check that α is a root of

f(t) = t4 − 10t2 + 1 ∈ Q[t]. To show that this is the minimal polynomial of α over Q, we

must show that it is irreducible over Q. If not, then it is reducible over Z, and we have

either

(i) f(t) = (t± 1)(t3 + at2 + bt± 1) where a, b ∈ Z, or

(ii) f(t) = (t2 + at± 1)(t2 + bt± 1) where a, b ∈ Z.

Case (i) cannot occur since neither 1 nor −1 is a root of f(t). In case (ii) we must have

b = −a and −a2±2 = 10, which has no integer solutions. We deduce that f(t) is irreducible

over Q, and hence f(t) is the minimal polynomial of α.

Observe the factorization

f(t) =
(
t−
√

2−
√

3
)(
t−
√

2 +
√

3
)(
t+
√

2−
√

3
)(
t+
√

2 +
√

3
)

in R[t]. We have a tower of fields

Q ⊆ Q[
√

2] ⊆ Q[α]

1 See e.g. Theorem 4.18 of Hungerford, Abstract Algebra: An Introduction; or
http://www/uwyo.edu/moorhouse/handouts/algebra.pdf p.67.
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of degree [Q[α] : Q] = 4. However, [Q[
√

2] : Q] = 2 since t2 − 2 is the minimal polynomial

of
√

2 over Q. (This follows from the fact that t2 − 2 is irreducible over Q, and has
√

2

as a root; it can also be deduced from the classical fact that
√

2 is irrational.) By the

transitivity of degrees, we deduce that [Q[α] : Q[
√

2]] = 2. In particular, α /∈ Q[
√

2], which

implies that
√

3 /∈ Q[
√

2]; this is stronger than the fact that
√

3 is irrational. Similarly,√
2 /∈ Q[

√
3].

Example 2. This example yields a proof that an arbitrary angle cannot be trisected using

a straightedge and compass. Define ζ ∈ C by

ζ = e2πi/9 = cos
(
2π
9

)
+ i sin

(
2π
9

)
;

ζ−1 = ζ = e−2πi/9 = cos
(
2π
9

)
− i sin

(
2π
9

)
.

We have

0 = ζ9 − 1 = (ζ3 − 1)(ζ6 + ζ3 + 1)

and since ζ3 = e2πi/3 6= 1, it follows that

ζ6 + ζ3 + 1 = 0.

Now consider

α = ζ + ζ−1 = ζ + ζ = 2 cos
(
2π
9

)
∈ R;

then
α3 − 3α+ 1 =

(
ζ + ζ−1

)3 − 3
(
ζ + ζ−1

)
+ 1

=
(
ζ3 + 3ζ + 3ζ−1 + ζ−3

)
− 3ζ − 3ζ−1 + 1

= ζ3 + ζ−3 + 1

= ζ6 + ζ3 + 1

= 0.

We claim that the polynomial f(t) = t3 − 3t+ 1 ∈ Z[t] is irreducible over Q. If not, then

it is reducible over Z and

f(t) = (t± 1)(t2 + at± 1)

for some a ∈ Z; but since neither 1 nor −1 is a root of f(t) = t3−3t+1, this is impossible.

Therefore f(t) is the minimal polynomial of α = 2 cos
(
2π
9

)
over Q, and

[Q[α] : Q] = 3.

Suppose we are given an initial configuration of labeled points, line segments and

circular arcs in R2. Each labeled points in this initial configuration have all been identified

as a point of intersection of two lines, or of two arcs, or of a line and an arc. Starting from
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this initial configuration of points and lines, we proceed to use straightedge and compass

to construct new points, lines and arcs using straightedge and compass by a sequence of

steps. Legal steps are as follows:

(A) Join two previously labeled points to form a line (or a segment thereof).

(B) Using three previously labeled points P,Q,R, construct the circle (or arc thereof)

with center P having QR as radius.

(C) Intersect two previously constructed lines to form a new labeled point.

(D) Intersect two previously constructed circular arcs to form a new labeled point.

(E) Intersect a line and a circular arc (previously constructed) to form a new labeled

point.

Denote by F ⊇ Q the extension field generated by

• the coordinates of the points,

• the slopes and intercepts of the lines, and

• the radii of the circles

in the initial configuration. After n steps we obtain a tower of fields

F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn

where Fn ⊇ Q is the extension field generated by the coordinates of the points, the slopes

and intercepts of the lines, and the radii of the circles after n steps. It is not hard to see

that [Fk : Fk−1] = 1 or 2 for each k ∈ {1, 2, . . . , n}. Indeed, steps of type (A), (B) and (C)

do not increase the coordinate field at all, so that [Fk : Fk−1] = 1. Steps of type (D) and

(E) yield new points whose coordinates are roots of a quadratic equation with coefficients

in Fk−1, so that [Fk : Fk−1] 6 2. The claim follows. Now by the transitivity of degrees for

field extensions, we conclude that [Fn : F ] is a power of 2.

It is well known that the angle 2π
3 = 120◦ is constructible. If an arbitrary angle can

be trisected using a straightedge and compass, then an angle 2π
9 = 40◦ is constructible

using a straightedge and compass. We will show that this is impossible:

We may assume that the circle x2 + y2 = 1 and the x and y axes are given, so we are

starting with F = Q. If, after a finite number of steps, we have constructed a line through

(0, 0) having a 40◦ angle with respect to the x-axis, then by intersecting this line with the

unit circle gives us the point
(
cos 2π

9 , sin
2π
9

)
. Thus after n steps we have α ∈ Fn and

Q ⊆ Q[α] ⊆ Fn.

By transitivity of degrees, [Q[α] : Q] = 3 must divide [Fn : Q]. However, [Fn : Q] is a

power of 2, a contradiction.
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