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Let F' C F be an extension of fields, and let § € E. Consider the ‘evaluation map’
Flt] = B, g(t) = g(6).
This is clearly a ring homomorphism; and by definition, its image is the subring
F[0] = {9(0) : g(t) € F[t]} € E.

The kernel of the evaluation map is an ideal in the polynomial ring F'[t]. However, F'[t] is
a principal ideal ring (i.e. every ideal is principal) so by the First Isomorphism Theorem

for Rings,

where every g(t) € F[t] satisfies
g(0) =0 < [f(t)|g(t) <= g(t) =m(t)f(t) for some m(t) € F(t).

The principal ideal (f(t)) generated by f(¢) is the set of all multiples of f(¢); this is the

set of all polynomials having 6 as a root. We have two cases:

Case (i): f(t) = 0. This says that 6 is not a root of any nonzero polynomial g(t) € F[t]; we
say that 0 is transcendental over F. (It may be shown, for example, that the well-known
constants m, e € R are transcendental over Q. I will distribute a handout containing proofs
of these facts, although we won’t cover all details in class.) In this case our isomorphism
reduces to

FCF|CE and F[0]=F[t].

Note that F[f] = Ft] is a ring but not a field; this is why each of the containments in
F C F[f] C Eis proper. In fact, F[f] = F[t] is an integral domain and its field of quotients
is the subfield F'(#). So we have

F CF[9] C F(9) C E.
Case (ii): f(t) has degree n > 1. We may assume f(t) is monic; otherwise divide f(¢) by

its leading coefficient. In this case we say 6 is algebraic of degree n over F', and f(t) is the

minimal polynomial of @ over F. By the Division Algorithm,
Flt]/(f(t)) = F[0] = {ao+a10+ax0®+ - +a,_10"" " :a; € F} C E.
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In this case F'[f] is actually a subfield of E, and we have a tower of extension fields

F C Fl§] = F(h) C E.

Here [F[0] : F] = n since {1,60,602,...,0" "1} is a basis for F[f] over F.

The arguments above require that we recognize when a polynomial is irreducible. For
a polynomial f(t) of degree n over a finite field F, this can be done by simply enumerating
reducible polynomials of degree n, of which there is certainly only a finite number. Moreover
for an arbitrary ground field F, if n € {2,3} then it suffices to check that f(t) € F[t] has
no roots in F'. It is helpful to have more general techniques for verifying irreducibility of

f(t). The following is very helpful when working over the ground field Q:

Theorem. Let f(t) € Z[t]. If f(t) is irreducible over Z, then f(t) is irreducible

over Q.

This is a standard result from ring theory!.

Example 1. Consider @« = v2 + 3 € R. It is easy to check that « is a root of
f(t) =t* —10t> + 1 € Q[t]. To show that this is the minimal polynomial of o over Q, we
must show that it is irreducible over Q. If not, then it is reducible over Z, and we have
either

(i) f(t) = (t £ 1)(t3 + at®> + bt + 1) where a,b € Z, or

(i) f(t) = (t* +at £1)(t*> + bt £ 1) where a,b € Z.
Case (i) cannot occur since neither 1 nor —1 is a root of f(¢). In case (ii) we must have
b= —a and —a?+2 = 10, which has no integer solutions. We deduce that f(t) is irreducible
over Q, and hence f(t) is the minimal polynomial of «.

Observe the factorization
F)=(t=v2-v3)(t—V2+V3)(t+ V2 - V3)(t+vV2+V3)
in R[t]. We have a tower of fields

Q C Q[V2] € Qo]

L See e.g. Theorem 4.18 of Hungerford, Abstract Algebra: An Introduction; or
http://www/uwyo.edu/moorhouse/handouts/algebra.pdf p.67.



of degree [Q[a] : Q] = 4. However, [Q[v/2] : Q] = 2 since t?> — 2 is the minimal polynomial
of v/2 over Q. (This follows from the fact that t?> — 2 is irreducible over Q, and has v/2
as a root; it can also be deduced from the classical fact that V2 is irrational.) By the
transitivity of degrees, we deduce that [Q[a] : Q[v/2]] = 2. In particular, a ¢ Q[v/2], which
implies that /3 ¢ Q[v/2]; this is stronger than the fact that v/3 is irrational. Similarly,

V2 ¢ Q[V3].

Example 2. This example yields a proof that an arbitrary angle cannot be trisected using

a straightedge and compass. Define ¢ € C by

/9 = cos(2F) + isin(3F);

=C=e 2™/ = Cos(%’r) — isin(%).

¢
<—1
We have

0= -1=( -1+ +1)

and since ¢® = €27/3 £ 1, it follows that
C+E+1=0.

Now consider
a=C(+( M =C+(=2cos(¥) eR;
then
o —3a+1= (§+§*1)3—3(C+C*1) +1

= (CP+3¢C+3¢"+¢?)=3¢-3¢C""+1

=+ +1

=+ +1

= 0.
We claim that the polynomial f(t) =3 — 3t + 1 € Z]t] is irreducible over Q. If not, then

it is reducible over Z and
fit)=(@t£1)(t* +at £1)

for some a € Z; but since neither 1 nor —1 is a root of f(t) = 3 — 3t + 1, this is impossible.

Therefore f(t) is the minimal polynomial of ov = 2 cos(%“) over Q, and

[Q[e] : Q] =3.

Suppose we are given an initial configuration of labeled points, line segments and
circular arcs in R?. Each labeled points in this initial configuration have all been identified

as a point of intersection of two lines, or of two arcs, or of a line and an arc. Starting from

3



this initial configuration of points and lines, we proceed to use straightedge and compass
to construct new points, lines and arcs using straightedge and compass by a sequence of

steps. Legal steps are as follows:

(A) Join two previously labeled points to form a line (or a segment thereof).

(B) Using three previously labeled points P, @), R, construct the circle (or arc thereof)
with center P having QR as radius.

(C) Intersect two previously constructed lines to form a new labeled point.

(D) Intersect two previously constructed circular arcs to form a new labeled point.

(E) Intersect a line and a circular arc (previously constructed) to form a new labeled

point.
Denote by F' O Q the extension field generated by

e the coordinates of the points,
e the slopes and intercepts of the lines, and

e the radii of the circles

in the initial configuration. After n steps we obtain a tower of fields
F=FRCFHCFRC - -Ck,

where F), DO Q is the extension field generated by the coordinates of the points, the slopes
and intercepts of the lines, and the radii of the circles after n steps. It is not hard to see
that [F) : Fx—1] =1 or 2 for each k € {1,2,...,n}. Indeed, steps of type (A), (B) and (C)
do not increase the coordinate field at all, so that [F}, : F,—1] = 1. Steps of type (D) and
(E) yield new points whose coordinates are roots of a quadratic equation with coefficients
in Fj_1, so that [Fy : Fy_1] < 2. The claim follows. Now by the transitivity of degrees for
field extensions, we conclude that [F), : F| is a power of 2.

It is well known that the angle %’T = 120° is constructible. If an arbitrary angle can
be trisected using a straightedge and compass, then an angle %” = 40° is constructible
using a straightedge and compass. We will show that this is impossible:

We may assume that the circle 2 +y? = 1 and the = and y axes are given, so we are
starting with F' = Q. If, after a finite number of steps, we have constructed a line through
(0,0) having a 40° angle with respect to the z-axis, then by intersecting this line with the

2r

unit circle gives us the point (cos &> sin %7’) Thus after n steps we have a € F,, and

Q C Qo] C F.

By transitivity of degrees, [Q[a] : Q] = 3 must divide [F,, : Q]. However, [F,, : Q] is a

power of 2, a contradiction.



