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1. (Note: 1 will use left-to-right composition of permutations since this is what GAP
uses.) Coxeter-Todd coset enumeration on the cosets of H = (a) yields [G : H] < 12;
see the attached worksheet. Since |H| < 5, this gives |G| < 60. At this point we
should already suspect that G = As;. Our coset table shows that the permutation
representation of G' on the twelve right cosets of H is given by

— (2,3,4,5,6)(7,9,10, 11, 8); b—(1,2,3)(4,6,7)(5,8,9)(10,11,12).
We confirm our suspicions using GAP:

gap> g:=Group((2,3,4,5,6)(7,9,10,11,8),(1,2,3) (4,6 )(5,8,9)(10,11,12));
Group([ (2, 3,4,5,6)(7 9,10,11,8), (1,2,3)(4 6,7)(5,8,9)(10,11,12) 1)
gap> Order(g);

60

gap> IsSimple(g);

true

gap>

While GAP has many sophisticated tools for group recognition, in this case it is an
easy matter to identify G = Ay since this is the unique simple group of order 60.

Alternatively, starting with the suspicion that G = As, it is not hard to find
generators for As satisfying the given presentation for G. For example we may take
a=(1,2,3,4,5) and 3 = (2,5,3), so af = (1,5)(3,4). Note that a® = 3% = (aB)? =
t. Now (o, 8) < As is a subgroup of order divisible by ged(5,3,2) = 30; and since
As is simple, it cannot have a subgroup of index 2. This proves that («a, ) = As.
This shows that As is a homomorphic image of G under an epimorphism satisfying
a — a,b— [. This gives the lower bound |G| > 60. We also have the upper bound
|G| < 60 using coset enumeration. Putting these together gives |G| = 60 and our
epimorphism G — Aj is an isomorphism.

Here is another GAP session in which we double-check our coset enumeration:

gap> f:=FreeGroup("a","b");

<free group on the generators [ a, b 1>
gap> g:=f/[£.1°5,£.273,(f.1x£.2)"2];
<fp group on the generators [ a, b ]>
gap> Order(g);

60

gap> IsSimple(g);

true

gap>



2. We first compute |G| = 336 using GAP:

gap> g:=Group((1,3,5,7,9,11,13)(2,4,6,8,10,12,14),
(1,2)(3,6)(4,5)(7,8)(9,12)(10,13) (11,14));

Group([ (1,3,5,7,9,11,13)(2,4,6,8,10,12,14),
(1,2)(3,6)(4,5)(7,8)(9,12)(10,13) (11,14) 1)

gap> Order(g);

336

gap> k:=DerivedSubgroup(g) ;

Group([ (1,13,9)(2,12,10)(3,7,5)(4,8,6), (1,11,3)(4,14,12)(5,9,7)(6,10,8) 1)

gap> Order (k) ;

168

gap> IsSimple(k);
true

gap> z:=Center(g);
Group(())

gap>

The derived subgroup K = G’ = [G, G] is the unique simple group of order 168, i.e.
K = PSLy(F7) =2 GL3(F2). Two candidates come to mind for G, and in fact it
may be shown that these are the only possibilities: either we have a direct product
G =2 PSLy(F7) x 2 or G = PGLy(F7). In the first case we would have a center Z(G)
of order 2. We used GAP to exclude this possibility; and given enough group theory
we may conclude that G = PG Lo (F7).

Next, we search for relations satisfied by the generators of GG, which we label
as p and o. The only relations we need to check are alternating products of powers
of p and o, i.e. finite expressions of the form p'ocpiopFo--- or oplop’op® - - where
the exponents i,j,k € {1,2,...,6}. Fortunately, we do not have to check too many
cases before we find suitable short relations of this form, using a continuation of our
previous GAP session:

gap> rho:=g.1l; sigma:=g.2;
(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)
(1,2)(3,6)(4,5)(7,8)(9,12)(10,13) (11,14)
gap> rho*sigma;
(1,6,7,12,11,10,9,14)(2,5,8,13) (3,4)
gap> rhox*sigma*rho”b*sigma;

(3,11) (4,10) (8,12)(9,13)

gap>

This yields the relations p” = 02 = (po)® = (pop°c)? = 1. While searching for
suitable relations we also found a number of other less helpful relations (which were
too long, leading to inconclusive coset enumeration problems which did not terminate
in a reasonable time). We have deleted these less helpful relations from our output.
Now we show that

G2 {a,b: a" =b* = (ab)® = (aba’b)* = 1)

using GAP to perform the coset enumeration:



gap> f:=FreeGroup("a","b");

<free group on the generators [ a, b 1>
gap> a:=f.1; b:=f.2;

a

b

gap> g:=f/[a"7,b"2, (axb) "8, (axb*a”5*b) ~2] ;
<fp group on the generators [ a, b ]>
gap> Order(g);

336

gap> k:=DerivedSubgroup(g);

Group([ (1,13,9)(2,12,10)(3,7,5)(4,8,6), (1,11,3)(4,14,12)(5,9,7)(6,10,8) 1)
gap> Order (k) ;

168

gap> IsSimple(k);

true

gap> Center(g);

Group(())

gap>

It is not hard to find elements generating PGLs(F7) and satisfying the indicated
relations. Take A = [ 1] and B = [} ] in GLy(F7). We compute (AB)® = (ABA®B)? =
[g 8] so the desired relations are satisfied in the quotient group PG Ly (F7) = GLo(F7)/Z
where Z = {[g 2] ca=1,2,3,4,5, 6}. Now if we interpret A and B as the corresponding
elements of PG Lo(F7), the subgroup (A, B) is a homomorphic image of G. But the only
normal subgroups of G are the subgroups {1}, K, G so every homomorphic image of G has

order 1, 2 or 336. It follows that the epimorphism G — PGLy(F7), a — A, b — B is an

isomorphism.

It is also not hard to show that G is the automorphism group of the graph shown.
1 2

9 8
The black and white vertices represent the points and lines of the projective plane of

order 2, i.e. the 1- and 2-dimensional subspaces of F3. Edges of the graph represent
incidence (containment). The full automorphism group of the projective plane is the
group GL3(F2) = K of order 168, acting naturally on F3 by linear transformations. The
remaining 168 elements of G' act as dualities of F3, interchanging points and lines (the
black and white vertices).



3. Let G; and G2 be the groups in #1 and #2 respectively. Each of these groups can be
generated by m = 2 elements. In order for both groups to be homomorphic images
of B(2,n), we need n to be divisible by the orders of all the elements of both groups.
Clearly we can take n = 840 = lem(|G1], |G2|) for this purpose.

Indeed, 840 is the smallest value that works. We have

a € Gy of order 5;
be Gp of order 3;
p € Go of order 7;
po € Go of order 8

and the least common multiple of these orders is 840.

The exponent of a group G is the least common multiple of the orders of its
elements. Thus G has exponent 60 and G2 has exponent 168. So the exponent of
a finite group G is an integer dividing the order of the group; it is the least positive
integer n such that g" for every element g € (G. An infinite group may have finite
or infinite exponent. The Burnside group B(m,n) is the most general (or universal)
group of exponent dividing m, generated by n elements.



