
Solutions to HW2

1. (Note: I will use left-to-right composition of permutations since this is what GAP

uses.) Coxeter-Todd coset enumeration on the cosets of H = 〈a〉 yields [G : H] 6 12;

see the attached worksheet. Since |H| 6 5, this gives |G| 6 60. At this point we

should already suspect that G ∼= A5. Our coset table shows that the permutation

representation of G on the twelve right cosets of H is given by

a 7→ (2, 3, 4, 5, 6)(7, 9, 10, 11, 8); b 7→ (1, 2, 3)(4, 6, 7)(5, 8, 9)(10, 11, 12).

We confirm our suspicions using GAP:

gap> g:=Group((2,3,4,5,6)(7,9,10,11,8),(1,2,3)(4,6,7)(5,8,9)(10,11,12));
Group([ (2,3,4,5,6)(7,9,10,11,8), (1,2,3)(4,6,7)(5,8,9)(10,11,12) ])
gap> Order(g);
60
gap> IsSimple(g);
true
gap>

While GAP has many sophisticated tools for group recognition, in this case it is an

easy matter to identify G ∼= A5 since this is the unique simple group of order 60.

Alternatively, starting with the suspicion that G ∼= A5, it is not hard to find

generators for A5 satisfying the given presentation for G. For example, we may take

α = (1, 2, 3, 4, 5) and β = (2, 5, 3), so αβ = (1, 5)(3, 4). Note that α5 = β3 = (αβ)2 =

ι. Now 〈α, β〉 6 A5 is a subgroup of order divisible by gcd(5, 3, 2) = 30; and since

A5 is simple, it cannot have a subgroup of index 2. This proves that 〈α, β〉 = A5.

This shows that A5 is a homomorphic image of G under an epimorphism satisfying

a 7→ α, b 7→ β. This gives the lower bound |G| > 60. We also have the upper bound

|G| 6 60 using coset enumeration. Putting these together gives |G| = 60 and our

epimorphism G→ A5 is an isomorphism.

Here is another GAP session in which we double-check our coset enumeration:

gap> f:=FreeGroup("a","b");
<free group on the generators [ a, b ]>
gap> g:=f/[f.1^5,f.2^3,(f.1*f.2)^2];
<fp group on the generators [ a, b ]>
gap> Order(g);
60
gap> IsSimple(g);
true
gap>



2. We first compute |G| = 336 using GAP:

gap> g:=Group((1,3,5,7,9,11,13)(2,4,6,8,10,12,14),
(1,2)(3,6)(4,5)(7,8)(9,12)(10,13)(11,14));

Group([ (1,3,5,7,9,11,13)(2,4,6,8,10,12,14),
(1,2)(3,6)(4,5)(7,8)(9,12)(10,13)(11,14) ])

gap> Order(g);
336
gap> k:=DerivedSubgroup(g);
Group([ (1,13,9)(2,12,10)(3,7,5)(4,8,6), (1,11,3)(4,14,12)(5,9,7)(6,10,8) ])
gap> Order(k);
168
gap> IsSimple(k);
true
gap> z:=Center(g);
Group(())
gap>

The derived subgroup K = G′ = [G,G] is the unique simple group of order 168, i.e.

K ∼= PSL2(F7) ∼= GL3(F2). Two candidates come to mind for G, and in fact it

may be shown that these are the only possibilities: either we have a direct product

G ∼= PSL2(F7)× 2 or G ∼= PGL2(F7). In the first case we would have a center Z(G)

of order 2. We used GAP to exclude this possibility; and given enough group theory

we may conclude that G ∼= PGL2(F7).

Next, we search for relations satisfied by the generators of G, which we label

as ρ and σ. The only relations we need to check are alternating products of powers

of ρ and σ, i.e. finite expressions of the form ρiσρjσρkσ · · · or σρiσρjσρk · · · where

the exponents i, j, k ∈ {1, 2, . . . , 6}. Fortunately, we do not have to check too many

cases before we find suitable short relations of this form, using a continuation of our

previous GAP session:

gap> rho:=g.1; sigma:=g.2;
(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)
(1,2)(3,6)(4,5)(7,8)(9,12)(10,13)(11,14)
gap> rho*sigma;
(1,6,7,12,11,10,9,14)(2,5,8,13)(3,4)
gap> rho*sigma*rho^5*sigma;
(3,11)(4,10)(8,12)(9,13)
gap>

This yields the relations ρ7 = σ2 = (ρσ)8 = (ρσρ5σ)2 = 1. While searching for

suitable relations we also found a number of other less helpful relations (which were

too long, leading to inconclusive coset enumeration problems which did not terminate

in a reasonable time). We have deleted these less helpful relations from our output.

Now we show that

G ∼=
〈
a, b : a7 = b2 = (ab)8 = (aba5b)2 = 1

〉
using GAP to perform the coset enumeration:



gap> f:=FreeGroup("a","b");
<free group on the generators [ a, b ]>
gap> a:=f.1; b:=f.2;
a
b
gap> g:=f/[a^7,b^2,(a*b)^8,(a*b*a^5*b)^2];
<fp group on the generators [ a, b ]>
gap> Order(g);
336
gap> k:=DerivedSubgroup(g);
Group([ (1,13,9)(2,12,10)(3,7,5)(4,8,6), (1,11,3)(4,14,12)(5,9,7)(6,10,8) ])
gap> Order(k);
168
gap> IsSimple(k);
true
gap> Center(g);
Group(())
gap>

It is not hard to find elements generating PGL2(F7) and satisfying the indicated

relations. Take A =
[
1
0

1
1

]
and B =

[
0
1

1
0

]
in GL2(F7). We compute (AB)8 = (ABA5B)2 =[

6
0

0
6

]
so the desired relations are satisfied in the quotient group PGL2(F7) = GL2(F7)/Z

where Z =
{[

a
0

0
a

]
: a = 1, 2, 3, 4, 5, 6

}
. Now if we interpret A and B as the corresponding

elements of PGL2(F7), the subgroup 〈A,B〉 is a homomorphic image of G. But the only

normal subgroups of G are the subgroups {1},K,G so every homomorphic image of G has

order 1, 2 or 336. It follows that the epimorphism G → PGL2(F7), a 7→ A, b 7→ B is an

isomorphism.

It is also not hard to show that G is the automorphism group of the graph shown.

The black and white vertices represent the points and lines of the projective plane of

order 2, i.e. the 1- and 2-dimensional subspaces of F3. Edges of the graph represent

incidence (containment). The full automorphism group of the projective plane is the

group GL3(F2) ∼= K of order 168, acting naturally on F3
2 by linear transformations. The

remaining 168 elements of G act as dualities of F3
2, interchanging points and lines (the

black and white vertices).



3. Let G1 and G2 be the groups in #1 and #2 respectively. Each of these groups can be

generated by m = 2 elements. In order for both groups to be homomorphic images

of B(2, n), we need n to be divisible by the orders of all the elements of both groups.

Clearly we can take n = 840 = lcm(|G1|, |G2|) for this purpose.

Indeed, 840 is the smallest value that works. We have

a ∈ G1 of order 5;

b ∈ G1 of order 3;

ρ ∈ G2 of order 7;

ρσ ∈ G2 of order 8

and the least common multiple of these orders is 840.

The exponent of a group G is the least common multiple of the orders of its

elements. Thus G1 has exponent 60 and G2 has exponent 168. So the exponent of

a finite group G is an integer dividing the order of the group; it is the least positive

integer n such that gn for every element g ∈ G. An infinite group may have finite

or infinite exponent. The Burnside group B(m,n) is the most general (or universal)

group of exponent dividing m, generated by n elements.


