
Solutions to HW1

1. (a) Denote the support of g ∈ SymX by supp(g) = {x ∈ X : g(x) 6= x}. The

identity element 1 ∈ G has | supp(1)| = 0, so 1 ∈ FinSymX. For g, h ∈ G we

have supp(gh) ⊆ supp(g)∪ supp(h) and supp(g−1) = supp(g), which are finite sets.

So FinSymX is a subgroup of SymX. Clearly X is proper: choose any infinite

sequence xn ∈ X for n ∈ Z and consider the cycle which maps xn 7→ xn+1 for all

n ∈ Z, while fixing any remaining elements of X; this cycle lies in SymX but not

in FinSymX.

(b) Given g ∈ FinSymX, we may define g to be an even or an odd permutation

of X according as g is an even or an odd permutation of its support, and we

write sgn(g) = +1 or −1 respectively. So sgn : FinSymX → {±1} is well-

defined. Clearly sgn(gh) = sgn(g) sgn(h) by considering the restriction of g, h, gh

to supp(g)∪supp(h). So sgn is a homomorphism. It is surjective since the transpo-

sitions lie in FinSymX. We define AltX to be the kernel of this homomorphsim.

(Remark: FinSymX is the direct limit of the family of subgroups SymK 6 SymX

over all finite subsets K ⊂ X, and AltX is the direct limit of the alternating sub-

groups AltK. See the textbook for a discussion of direct limits.)

(c) The quotient group SymX/FinSymX is not simple whenever X is uncountable,

for the same reasons as those underlying (a): we have FinSymX ..........................
.......................... N ..........................

.......................... SymX

where N consists of all permutations having countable support.

However, the quotient group is simple whenever X is countably infinite. I

think I mentioned this in class; and in Appendix I, I have supplied a proof which

is elementary but somewhat technical. (Possibly you can find a shorter proof

than mine? I haven’t tried to look up the answer. But the strategy is similar to

the proof that An is simple for n > 5; see pp.71-72 of the textbook.)

2. Let G = GL2(F ) where F is an arbitrary field.

(a) Let Z =
{
aI : 0 6= a ∈ F

}
. Clearly Z ⊆ Z(G) since (aI)g = ag = g(aI) for all

g ∈ G. Conversely, suppose g =
[
a
c
b
d

]
∈ Z(G). Since g

[
1
0

0
0

]
=
[
1
0

0
0

]
g, we obtain

b = c = 0. Also g
[
0
1

0
0

]
=
[
0
1

0
0

]
g which gives a = d, so g =

[
a
0

0
a

]
∈ Z. Thus

Z = Z(G) as required.

(b) Consider a point of the projective line 〈u〉 ∈ P1F where 0 6= u ∈ F 2. Note that

by definition, 〈u〉 is a one-dimensional subspace of F 2; and this subspace is fixed



by g ∈ G iff u is an eigenvector of g. If 〈u〉, 〈v〉 and 〈w〉 are three distinct points

of P1F fixed by g, then gu = λu, gv = µv and gw = νw for some nonzero scalars

λ, µ, ν ∈ F . Since we started with three distinct one-dimensional subspaces, any

two of the vectors u, v, w form a basis for F 2. So w = au+ bv for some nonzero

a, b ∈ F and ν(au + bv) = νw = gw = agu + bgv = aλv + bµv. Comparing

coefficients yields aν = aλ and bν = bµ. Since a and b are nonzero, we obtain

λ = µ = ν. Since both basis vectors u, v are eigenvectors for g with the same

eigenvalue λ, we have g =
[
λ
0

0
λ

]
∈ Z. Conversely, given g =

[
λ
0

0
λ

]
∈ Z, every

vector is a λ-eigenvector for g, so g fixes every one-dimensional subspace.

Yes, AltX is simple. Let K ..........................
............................................. AltX be any nontrivial normal subgroup, and

let g ∈ K be a nontrivial element. Then g ∈ An for some positive integer n. We

may suppose n > 5. Since Am is simple for all m > 5, we have K ⊇ Am for all

m > n. So K = AltK. This proves that AltX is simple.

(c) The kernel of the homomorphism G → SymP1F is by definition the set of all

g ∈ G fixing every point. The number of fixed points for every such g is |P1F | =
|F |+1 > 3; so by (b), every such g is in Z. Conversely, every g ∈ Z fixes every

point of P1F .

3. Since B is real symmetric, B = UTD′U for some U ∈ On(R) and real n× n diagonal

matrix D′. We may write D′ = D2 for some diagonal complex n × n matrix D. So

B = MTM where M = DU . Since B is invertible, so is M . Now A ∈ O(B,C) iff

ATBA = B iff (ATMT)(MA) = MTM iff (M−TATMT)(MAM−1) = I iff MAM−1 ∈
O(I,C). The map O(B,C) → O(I,C), A 7→ MAM−1 is clearly an isomorphism

(conjugation by M is an inner automorphism of GL(Cn), and we are restricting this

isomorphism to the subgroup O(B,C)).

Remarks. An n-dimensional vector space Fn over F has subspaces of dimension 1, 2, 3, . . . ,

n−1 which are called projective points, lines, planes, . . . , hyperplanes of the projective

(n−1)-space Pn−1F over F . The group GLn(F ) acts on the projective space, transitively

permuting the subspaces of each fixed dimension. Since the center Z = Z(GLn(F )) =

{aI : 0 6= a ∈ F} acts trivially on Pn−1F , the permutation group induced by GLn(F ) is

the projective general linear group PGLn(F ) = GLn(F )/Z.

The isometry group O(Q,F ) of a quadratic form Q : Fn → F does not act transitively

on points. Over C, there are two point orbits: the points 〈u〉 satisfying Q(u) = 0 (the

point set known as the corresponding quadric) and the points for which Q(u) 6= 0. It is

useful to keep this perspective in mind for #4. Actually in #4, the quadric is simply a

curve in the projective plane P2C: it is the set of points 〈(a, b, c)T 〉 satisfying b2− 4ac = 0.

These points all clearly have the form



• the points 〈(1, 2λ, λ2)T 〉 for λ ∈ C; and

• the point 〈(0, 0, 1)T 〉.

Thus a nondegenerate conic in the projective plane P2C is indexed by C ∪ {∞}, just like

the points of the projective line P1C. The goal of #4 is to show more: the conic and the

projective line have isomorphic groups PSL2(C) and PSO3(C) acting on them. Moreover,

these two permutation actions are equivalent.

4. (a) If g ∈ GL2(C) then g = h
[
d
0

0
1

]
where d = det g and h ∈ SL2(C). Now[

d
0

0
1

]
f(x, y) = ad2x2 + bdxy + cy2 and Q

([
d
0

0
1

]
f
)

= (bd)2 − 4ad2c = d2Q(f),

so it remains only to show that Q(hf) = Q(f) for all h ∈ SL2(C). The matrix

h =
[
1
λ

0
1

]
satisfies

(hf)(x, y) = ax2 + bx(λx+y) + c(λx+y)2 = (a+λb+λ2c)x2 + (b+2λc)xy + cy2,

Q(hf) = (b+2λc)2 − 4(a+λb+λ2c)c = b2 − 4ac = Q(f).

The same computation holds for hT ; and since such matrices are known to gen-

erate SL2(C) (see Appendix II), we have Q(hf) = Q(f) for all h ∈ SL2(C) as

required.

(b) This was part of our proof in (a).

(c) For the matrix h =
[
1
λ

0
1

]
, the computation in (a) shows that the matrix of h

with resect to the basis {x2, xy, y2} of V is

Rh =

 1 λ λ2

0 1 2λ
0 0 1

 ∈ SL3(C)

and a similar computation holds for hT . Once again since these matrices generate

SL2(C) and the map h 7→ Rh is a homomorphism, Rh ∈ SL3(C) for all h ∈
SL2(C). (Alternatively, the map SL2(C)→ C×, h 7→ detRh is a homomorphism,

so its kernel is a normal subgroup of SL2(C). The kernel contains all commutators

[h, k] = hkh−1k−1. Since PSL2(C) is nonabelian simple, the kernel must be all

of SL2(C).)

So Rh ∈ O3(C) ∩ SL3(C) = SO3(C) for all h ∈ SL2(C). The fact that

RhRk = Rhk follows directly from the fact that SL2(C) is acting on V by linear

changes of variable; and by definition, composition of such changes of variable is

associative:

Rhkf = (hk)f = h(kf) = RhRkf.



Before proceeding further, we point out that the upper triangular matrices found in (c) fix

the point 〈u〉 of the conic, where u = (1, 0, 0)T . These matrices constitute almost the full

stabilizer of the point 〈u〉 in S ∼= SO3(C), the subgroup of SL(V ) preserving the quadratic

form Q. The column vectors u and v = (0, 0, 1)T represent the basis vectors x2, y2 ∈ V
respectively. Here we compute their respective stabilizers in S.

Every matrix A ∈ S〈u〉 must have the form

A =

 ε α β
0 γ δ
0 µ ν


for some α, β, γ, δ, ε, µ, ν ∈ C. The conditions ABAT = B and detA = 1 give equations in

α, β, . . . , ν which are easy to solve, leading to

A =

 ε ελ ελ2

0 1 2λ
0 0 ε

 , ε = ±1.

Extending the computation in (a,c), we see that these matrices all have the form Rh where

h =
[
1
λ

0
1

]
or
[
i
iλ

0
−i
]
. Similarly, the stabilizer S〈v〉 consists of all Rh where h =

[
1
0
λ
1

]
or[

i
0
−iλ
−i
]
.

Our proof of Part (d) below uses the Frattini Argument (Appendix III). As preparation

for this, you might consider reading the two proofs we have given in Appendix II, with

and without the Frattini Argument.

(d) Let S = SO3(C), and denote the image of our homomorphism by H = {Rh : h ∈
SL2(C)} 6 S. By the computations above, 〈S〈u〉, S〈v〉〉 6 H. The subgroup S〈v〉
fixes a single point 〈v〉 of the conic, while transitively permuting the remaining

points of the conic (these points have the form 〈(1, 2λ, λ2)T 〉 = Rhu where h =[
1
0
λ
1

]
, Rh ∈ S〈v〉). Similarly, S〈u〉 has two orbits on the points of the conic: {〈u〉}

and all the remaining points of the conic. From this it follows that 〈S〈u〉, S〈v〉〉 is

transitive on the conic. By the Frattini argument (Appendix III),

S = 〈S〈u〉, S〈v〉〉S〈v〉 = 〈S〈u〉, S〈v〉〉 6 H 6 S.

This gives H = S as required.

(e) All that is left is to show that the map h 7→ Rh has kernel ±I, for then PSL2(C) =

SL2(C)/{±I} ∼= SO3(C) by the First Isomorphism Theorem. We already know

that the kernel contains ±I; and since our homomorphism is onto SO3(C), the

kernel must be a proper normal subgroup of SL2(C) containing ±I. Given that

PSL2(C) is simple, the kernel equals {±I} and we are done. Put another way,

the only proper normal subgroups K ..........................
.......................... SL2(C) are {I} and Z = {±I}. See

Appendix IV for a proof of this standard fact.



APPENDIX I

Theorem. If X is countably infinite, then the quotient group SymX/FinSymX is simple.

Before proceeding with the proof, note that every permutation of X is a product of

disjoint cycles, just as in the finite case. Moreover every cycle is either finite or infinite in

length. For example, the permutation π ∈ SymZ defined by

π(n) =

{
n+5, if n 6≡ 0 mod 5;
−n, if n ∈ {±5,±10,±15};
n, otherwise

has infinitely many fixed points, three cycles of length 2, and four infinite cycles. This we

express symbolically as π ` (1)∞(2)3(∞)4. Similarly, we write π `
∏
i(ni)

mi to indicate

that π ∈ SymX has mi ∈ {0, 1, 2, 3, . . .} ∪ {∞} cycles of length ni ∈ {1, 2, 3, . . .} ∪ {∞}.
Here ‘∞’ means countably infinite, assuming X is countably infinite; so actually ∞ means

ℵ0 here.

Also, two permutations β, γ ∈ SymX are conjugate iff they have the same cycle

structure, meaning that they have the same number of cycles of each length (i.e. the same

number of cycles of length n for each positive integer n, and the same number of cycles of

infinite length).

Our proof of the theorem above is in three steps:

(1) We first show that there exists π ∈ N such that π ` (1)∞(∞)2.

(2) Next we show that for every m ∈ {0, 1, 2, 3, . . .} ∪ {∞}, there exists π ∈ N such that

π ` (1)m(2)∞.

(3) Finally, we show that N = SymX.

Since α ∈ N has infinite support, it is easy to partition X into three disjoint infinite

subsets as X = AtBtC where A = {an : n ∈ Z}, B = {bn : n ∈ Z} and C = {cn : n ∈ Z}
such that α(an) = bn for all n. Let ρ ∈ SymX be the infinite cycle mapping an 7→ an+1 for

each n ∈ Z, and fixing all other points of X, i.e. ρ(bn) = bn and ρ(cn) = cn. Since N is a

normal subgroup containing α, it also contains β = α(ρα−1ρ−1). But β maps an 7→ an−1,

bn 7→ bn+1, cn 7→ cn so β ` (1)∞(∞)2. This proves (1).

Once again let X = AtBtC be a partition into three infinite subsets with A = {an :

n ∈ Z}, B = {bn : n ∈ Z} and C = {cn : n ∈ Z}. By (1) and the fact that N is normal,

N contains every permutation of type (1)∞(∞)2. So γ, δ ∈ N where γ maps an 7→ an+1,

bn 7→ bn+1 and cn 7→ cn; and δ maps an 7→ bn−1, bn 7→ an−1 and cn 7→ cn. Then γδ ∈ N
which interchanges an ↔ bn and maps cn 7→ cn, so γδ ` (1)∞(2)∞.

Now it only remains to verify (2) in the case that m is a positive integer. In this

case we partition X = A t B t C where |A| = |B| = ∞ and |C| = m. By the previous

paragraph, there exist permutations α, β ∈ N such that α fixes every point of B t C,



and is a product of disjoint 2-cycles on A; also β fixes every point of A t C, and is a

product of disjoint 2-cycles on B. Then αβ ∈ N with αβ ` (1)m(2)∞. So (2) holds for all

m ∈ {0, 1, 2, 3, . . .} ∪ {∞}.
Finally, let π ∈ SymX, and let X =

⊔
nXn be the partition into orbits of 〈π〉.

(Here the orbits do not necessarily have distinct lengths; if mi is the number of orbits Xn

having length |Xn| = i, then π ` (i)mi .) Expressing π as a product of disjoint cycles, we

have π =
∏
i πi where πi cycles just the points of Xi. We may write πi = αiβi where

αi, βi, πi ∈ SymXi with α2
i = β2

i = π
|Xi|
i = 1.

Here you should first consider the case i ∈ {3, 4, 5, . . .} and view Xi as the vertex set

of a regular |Xi|-gon. Here 〈αi, βi〉 is the dihedral symmetry group of the regular polygon,

generated by two reflections αi and βi, and having αiβi = πi as a rotational syummetry.

If |Xi| = 2 then instead SymXi = {αi, βi} where αi = 1 and βi = πi transposes the two

points in Xi. If |Xi| = 1 then αi = βi = πi is the identity permutation of the singleton

set Xi. If |Xi| = ∞ then once again the infinite cycle πi has the required form πi = αiβi

in the infinite dihedral group 〈αi, βi〉. (Up to equivalence here, we may take Xi = Z,

πi(x) = x+1, αi(x) = 1−x, βi(x) = −x.)

Note that π =
∏
i πi = αβ where α =

∏
i αi and β =

∏
i βi. Note that αi commutes

with βj whenever i 6= j, since their supports are disjoint. Also note that α, β ∈ N since

they have cycle structure as in (2). So π = αβ ∈ N as required.

APPENDIX II

Theorem. Let F be a field. The group SL2(F ) is generated by S := {hλ, hTλ : λ ∈ F}
where hλ =

[
1
0
λ
1

]
.

First Proof. Let g =
[
a
c
b
d

]
∈ SL2(F ). We show that g ∈ 〈S〉, in three cases.

Case (i). If a = 0, then bc = −1 and g = hbh
T
c h1−bd ∈ 〈S〉.

Case (ii). If c = 0, then g =
[

0
−1

1
0

][
0
a
−d
b

]
∈ 〈S〉 by case (i).

Case (iii). Otherwise ac 6= 0 and h
−a/c

g has first entry zero so h
−a/c

g ∈ 〈S〉 by case (i).

This gives g ∈ 〈S〉 as required.

Second Proof. The group G := SL2(F ) permutes the nonzero vectors of F 2. The vectors

u = (1, 0)T and v = (0, 1)T have stabilizers Gu = {hλ : λ ∈ F} and Gv = {hTλ : λ ∈ F}
respectively. Let H = 〈Gu, Gv〉; we must show that H = G. The crux of this argument is to

show that H permutes the nonzero vectors in F 2 transitively. The orbit Hv = {hv : h ∈ H}
contains all vectors of the form hλv = (λ, 1)T , λ ∈ F . Now if λ 6= 0 and ν ∈ F , then

hT(ν−1)/λ(λ, 1)T = (λ, ν)T ∈ Hv. Finally, if 0 6= ν ∈ F , then (0, ν)T = h1(−ν, ν)T ∈ Hv.

So Hv is the set of all nonzero vectors in F 2, i.e H permutes the nonzero vectors in



F 2 transitively. By the Frattini Argument (Appendix III), G = GuH = Gu〈Gu, Gv〉 6
〈Gu, Gv〉 = H 6 G. The desired conclusion H = G follows.

APPENDIX III

The following argument, shown in class, is ‘enormously useful’ as Robinson says; and

not just in the limited context of Sylow theory where the textbook refers to it.

Theorem (Frattini Argument). Suppose G permutes a set X, with a transitive sub-

group H 6 G. Then for every point x ∈ X, we have G = GxH = HGx.

Proof. Of course GxH ⊆ G; our job is to prove the reverse inclusion. Let g ∈ G, and

denote y = g(x) ∈ X. Since H permutes X transitively, there exists h ∈ H such that

h(y) = x. Now (hg)(x) = h(y) = x, so hg ∈ Gx and g = h−1·hg ∈ HGx. This gives

G = HGx; and taking inverses on both sides gives GxH = G.

APPENDIX IV

The group PSL2(F ) is simple whenever |F | > 4. Here is a proof when F = C, and

the general case is almost as easy.

Theorem. Let Z ..........................
.......................... K ..........................

............................................. SL2(C) where Z = {±I} (note: K is a normal subgroup which

properly contains Z). Then K = SL2(C). In other words, the group PSL2(C) is simple.

Proof. Let g ∈ K, g /∈ Z. The characteristic polynomial of g is t2 − 2at + 1 for some

a ∈ C. There are three cases to consider:

(i) a2 6= 1 and g is similar to D :=
[
d−1

0
0
d

]
, d + d−1 = 2a, d /∈ {0,±1}. Since g has

two distinct eigenvalues, there exists A ∈ GL2(C) whose columns form a basis of

C2 consisting of corresponding eigenvectors for g. After scaling these eigenvectors if

necessary, we may further assume A ∈ SL2(C). Now g = ADA−1. Since K ..........................
............................................. SL2(C),

we obtain D ∈ K. Also given λ ∈ C, the matrix B =
[
d−1

0
dλ
d

]
has characteristic

polynomial t2 − 2at + 1; it is similar to D and the same argument gives B ∈ K.

So DB =
[
1
0
λ
1

]
∈ K. A similar argument gives

[
1
λ

0
1

]
∈ K, So K = SL2(C) by

Appendix II. In this case we are done.

(ii) a = 1 and g is similar to B =
[
1
0
b
1

]
, b 6= 0. Using similarity as in the previous case,

we get B ∈ K. Let 0 6= λ ∈ C. Conjugating by D =
[
d−1

0
0
d

]
where d = ±

√
λ/b, we

obtain DBD−1 =
[
1
0
λ
1

]
∈ K since K is normal. Also,

[
0
i
i
0 ]
[
1
0
λ
1

][
0
i
i
0 ] =

[
1
λ

0
1 ] ∈ K.

As before, K = SL2(C) and we are done.

(iii) a = −1 and g is similar to B =
[−1

0
b
−1
]
, b 6= 0. Using similarity as before, B ∈ K.

So B2 =
[
1
0
−2b
1

]
∈ K. The result follows from case (ii).


