
Free Groups

Rather than begin with the definition of a free group, let’s begin with some examples. The

free group on two generators x and y, denoted 〈x, y〉, has as its elements all the (finite)

words in x and y. By a word in x and y, we mean a finite product of powers of x and y.

Whenever two powers of x are juxtaposed, we simplify using the rule xixj = xi+j (here

i, j ∈ Z); similarly for powers of y. Furthermore x0 = y0 = 1 is the identity. No other

simplification is possible in a free group. Consider for example the product of x2y−3xy−2

with y2x−4y−1:

(x2y−3xy−2)(y2x−4y−1) = x2y−3xx−4y−1 = x2y−3x−3y−1.

The inverse of x2y−3xy−2 is y2x−1y3x−2. It is not hard to see that 〈x, y〉 is a group. This

group is generated by x and y, which are independent symbols (hence ‘free’, meaning that

there are no relations between x and y).

For any set X (finite or infinite), we similarly construct the free group on X. This

group, denoted by 〈X〉, consists of all words in the elements of X (these being finite

products of powers of elements of X). Here is an example of a computation in 〈x, y, z〉:

(y−1zy2x−1y)2(z−1yx−1y)−1 = (y−1zy2x−1y)(y−1zy2x−1y)(y−1xy−1z)

= y−1zy2x−1zyz.

The free group on one generator is infinite cyclic:

〈x〉 = {. . . , x−2, x−1, 1, x, x2, x3, . . .}.

Evidently 〈X〉 is abelian iff |X| 6 1. The case |X| = 0 gives the trivial group: 〈∅〉 = {1}.
As straightforward as this general construction is, it is notable for several reasons:

• It provides an early example of a class of groups constructed not from numbers,

matrices, or functions, but in a purely formal manner.

• Some of our earliest examples of fundamental groups may be identified (up to iso-

morphism) as free groups. Indeed if X = R2r{P1, P2, . . . , Pn}, where P1, . . . , Pn
are distinct points in the plane, then π1(X) is a free group on n generators.

• It provides the starting point for describing the more general notion of group

presentations (specification of groups using generators and relations).



As simple and natural as the construction of free groups appears, already we encounter

several interesting features. In particular, it is true (but not obvious) that every subgroup

of a free group is free. To prove this or any other substantial facts regarding free groups,

the construction we have described above is not very suitable. However we are about to

present the actual definition of a free group, which is suitable for proving basic facts about

free groups.

To understand this point, let me draw an analogy with the system of real numbers.

We learn at an early age how to represent real numbers as decimals. But to understand

any of the essential features of R (from the most basic algebraic properties, such as the

field axioms, to the more subtle properties used in modern real analysis) one appeals to

a definition of R as a completion of Q, i.e. real numbers are represented using Cauchy

sequences of rational numbers∗. Imagine how cumbersome it would be to try to prove the

distributive law for real numbers, if one were to use decimal representations to actually

define R!

Let us motivate the definition of a free group by observing that the elements of X play

the same role in the free group F = 〈X〉, as that played by a basis of a vector space: the

elements of the subset X ⊂ F generate F , but there are no nontrivial relations between the

elements of this subset. Our definition of a free group will in fact mimic another important

property of a basis of a vector space. Let V be a vector space, and B ⊂ V a basis. Then

every linear transformation ϕ : V → W is uniquely determined by its values on B. This

leads to an equivalent definition of a basis, as follows. (All vector spaces are over the same

field F , by assumption.)

Definition. Let B be a subset of a vector space V . We say that B is a basis of V

if every map ϕ from B to an arbitrary vector space W , has a unique extension to a

linear transformation ϕ̂ : V →W .

This is equivalent to the standard definition of a basis. Here, now, is a definition of a free

group:

Definition. Let X be a subset of a group F . We say that F is free on X if every

map ϕ from X to an arbitrary group G, has a unique extension to a homomorphism

ϕ̂ : F → G.

∗ One must identify Cauchy sequences of rationals having the same limit; so actually a
real number is represented as an equivalence class of Cauchy sequences of rationals. As an
alternative, one can use the easier approach of Dedekind cuts; but this approach relies heavily
on the total ordering of Q and so is not a typical approach to completion of a metric space.



(Note: Although every vector space has a basis, by Zorn’s Lemma, not every group is free!

The point is that while every group has a set of generators, it is not always possible to

find a set of ‘independent’ generators. The subject of group presentations will resolve this

issue.)

While this naturally mimics our definition of a basis, it raises two problems. One is

that for a given set X, we need to show that there exists a group which is free on X.

(This is however not hard; just use the construction given above! Take F to be the set of

words constructed from the set of symbols X, and show that F has the required property.)

Another is to prove uniqueness (up to isomorphism). But this can be shown without

much difficulty; and so one can then speak of the free group on X, denoted henceforth by

〈X〉. All important properties of free groups follow from the defining property, and the

construction using words over X takes a secondary place in our minds.

We refer to the defining property of a free group as its universality . We dwell on

this point because the notion of universality is very useful in defining a wide range of

objects (tensor products being a good example), far beyond our immediate goals. The

group F = 〈X〉 is the universal domain for all homomorphisms defined on a set of |X|
generators.

There is an even more useful formulation of the definition of a free group, as follows.

(This is the definition we will actually use!)

Definition. Let ι : X → F be a map from a set X to a group F . We say F is

free on X if for every map ϕ from X to an arbitrary group G, there is a unique

homomorphism ϕ̂ : F → G such that the following diagram commutes:
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The commutativity of the diagram means that ϕ̂ ◦ ι = ϕ. It is not hard to see that the

uniqueness of ϕ̂ in general, requires that ι be one-to-one; so we may identify X with its

image in F . So this definition is equivalent to the previous formulation of freeness.

To prove uniqueness of F , suppose the maps ι : X → F and ι̃ : X → F̃ both satisfy

the conditions of the definition. Then there exist maps α and β making the following

diagram commute:
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Now we ask for a map indicated by ‘?’, which makes the following diagram commute:

X
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Two candidates are β ◦ α, and the identity map on F . Since F is free on X, this forces

β ◦ α to be the identity on F . A similar argument shows that α ◦ β : F̃ → F̃ is also the

identity. So the homomorphisms α and β are in fact isomorphisms, inverse to each other.

In other words, F̃ ∼= F by an isomorphism which identifies the embedded copies of X in

these two groups. Our proof of uniqueness is complete.

Observe the advantage of the new formulation of ‘free’, evident in the latter proof; it

allowed us to embed X simultaneously in two different groups. This example (in which

the terminology of ‘subset’ was rephrased in the language of maps) illustrates the modern

approach of topos theory , or the theory of topoi (‘topoi’ is the plural of ‘topos’). In the

standard approach, one constructs all of mathematics from sets; for example a function

f : A → B is viewed as a subset of A × B (so f is a set of ordered pairs). In turn, one

constructs ordered pairs of elements (a, b) ∈ A×B as sets by defining (a, b) = {{a}, {a, b}}.
In this way all of mathematics is reduced to set theory (in a somewhat ad hoc manner, but

one that seems to work). A perspective of topos theory is to turn things around by making

functions the basic notions (not expressible in terms of any simpler notions), and defining

notions of ‘set’, ‘subset’, ‘Cartesian product’, etc. in terms of functions. ’Nuff said.

Free Subgroups of Linear Groups

A linear group is a subgroup of GL(V ) for V a vector space. We will take V = Fn

where F is a field; thus our linear groups are subgroups ofGLn(F ). The composition factors

of a group G have the form N/K where N 6 G and K is a maximal normal subgroup of

N . (So all composition factors of G are simple, hence either cyclic or nonabelian simple.)

A group is solvable if all its composition factors are cyclic. A group is viritually solvable

if it has a solvable subgroup of finite index. (In particular every finite group is virtually

solvable; and so is every solvable group.) A famous theorem of Jacques Tits (1972), is:

Theorem (Tits Alternative). Let G be an arbitrary linear group (so n > 1 and

G 6 GLn(F ) where F is an arbitrary field). Then either G is virtually solvable, or G

has a free subgroup on two generators.

For every cardinality of set r = |X|, one has the free group on X, which is a free group

Fr of rank r. These groups are not isomorphic for different r. But every subgroup of a



free group is free; and F2 contains free subgroups of every countable rank (finite or infinite

countable). So the second conclusion of the Tits Alternative may be replaced by ‘a free

subgroup of countable rank’.

The Theorem answered an earlier question of Hyman Bass and Jean-Pierre Serre. It

is a cornerstone of Geometric Group Theory. Its conclusion is a true alternative: if G

is virtually solvable, then it cannot have a free subgroup of rank 2. The proof requires

extensive background preparation in several areas, including algebraic geometry. We will

not have time to prove it here.

We will however present the result in an easy special case, where G = SO3(R). In this

case (as with most linear groups over R or C), there are many ways to choose A,B ∈ G
which generate a free subgroup of rank 2. Topological methods show that most pairs A,B

suffice. This is to be expected: for example if Aθ, Bθ ∈ SO3(R) are rotations by the same

angle θ about the x- and y-axes, respectively, then ‘most’ choices of θ give generators of a

free group of rank 2. There are only countably many words in Aθ and Bθ; and for every

such word, we expect that only countably many values of θ will fail to give generators of

a free group. Since there are uncountably many choices of angle θ, with only countably

many choices failing to give a free group 〈Aθ, Bθ〉, there should exist values of θ ∈ [0, 2π)

that work. Rather than trying to provide such an existence proof, we proceed to construct

an explicit pair of generators.

A Free Subgroup of SO3(R)

Our proof follows [W, pp.15–16]. (It seems however thatsome of the details in [W] are

incorrect. . . probably he means to work mod 3 in some places but hasn’t explicitly indicated

this. In any case, I will rewrite the proof in a way that I find more clear insightful.)

Consider the matrices

A±1 =
1

3

 1 ∓4 0
±2 1 0
0 0 3

 , B±1 =
1

3

 3 0 0
0 1 ∓2
0 ±4 1

 , D =

 1 0 0
0
√

2 0
0 0 1

 .
Note that detA = detB = 1; moreover the matrices

D−1AD =


1
3 ∓ 2

√
2

3 0

± 2
√
2

3
1
3 0

0 0 1

 , D−1BD =

 1 0 0

0 1
3 ∓ 2

√
2

3

0 ± 2
√
2

3
1
3


are orthogonal. We will show that they generate a subgroup

〈
D−1AD,D−1BD

〉
< SO3(R)

which is free of rank 2. After conjugating by D, it clearly suffices to show that the group

〈A,B〉 < GL3(R) is free of rank 2.

We begin with a technical result concerning the nontrivial 2×2 principal submatrices

of A and B:



Lemma. For every positive integer k, the matrices
[

1
±2
∓4
1

]k
and

[
1
±4
∓2
1

]k
have integer

entries which are not divisible by 3.

Proof. Let k > 1. An easy induction shows that the entries of
[

1
−2

4
1

]k
and its transpose

reduce (mod 3) to
[
2
2

2
2

]
or
[
1
1

1
1

]
, according as k is even or odd. Similarly, the entries of[

1
2
−4
1

]k
and its transpose reduce (mod 3) to

[
2
1

1
2

]
or
[
1
2

2
1

]
mod 3, according as k is even

or odd.

In the following, we use the 3-adic norm on Q defined by

||x|| = ||x||3 :=

{
0, if x = 0;

3−r, if x = 3r ab where a, b, r ∈ Z and ab 6≡ 0 mod 3.

Elementary number theory reasoning show that this is an ultrametric, i.e.

(i) ||x|| > 0, where equality holds iff x = 0;

(ii) ||xy|| = ||x||·||y||;
(iii) ||x+ y|| 6 max{||x||, ||y||}; and

(iv) equality holds in (iii) whenver ||x|| 6= ||y||.

Although we did not mention (iv) in class, it follows easily from (iii). For example, sup-

pose that ||x|| < ||y||. If the inequality in (iii) is strict, then ||x+y|| < ||y||, so ||y|| =

||(x+y)− x|| 6 max{||x+y||, ||x||} < ||y||, a contradiction.

Consider the subsets Lr, Rr ⊂ Q3 defined by

Lr =
{

(v1, v2, v3)T ∈ Q3 : ||v1|| = ||v2|| = 3r > ||v3||
}
,

Rr =
{

(v1, v2, v3)T ∈ Q3 : ||v1|| < ||v2|| = ||v3|| = 3r
}
.

Theorem. For all integers k 6= 0 and r > 1, we have

AkRr ⊆ L|k|+r and BkLr ⊆ R|k|+r .

Proof. Let k 6= 0, r > 1 and v ∈ Rr; thus v = (v1, v2, v3)T where ||v1|| < ||v2|| = ||v3|| = 3r.

By the Lemma, Akv = v′ = (v′1, v
′
2, v
′
3)T where

v′1 = αv1 + βv2,

v′2 = γv1 + δv2,

v′3 = v3

 , ||α|| = ||β|| = ||γ|| = ||δ|| = 3|k|.

Since ||αv1|| = 3|k|||v1|| < 3|k|||v2|| = ||βv2||, (iv) gives

||v′1|| = ||αv1 + βv2|| = ||βv2|| = 3|k|+r.

Similarly, ||v′2|| = 3|k|+r. Since ||v′3|| = ||v3|| = 3r < 3|k|+r, we obtain v′ ∈ L|k|+r . The

proof that BkLr ⊆ R|k|+r is similar.



Theorem. 〈A,B〉 is a free subgroup of GL3(R). Thus
〈
D−1AD,D−1BD

〉
is a free sub-

group of SO3(R).

Proof. We must show that no nontrivial word w ∈ 〈A,B〉 yields the identity. With-

out loss of generality, w = AkrB`rAkr−1B`r−1 · · ·Ak1B`1Ak0 for some nonzero integers

kr, `r, kr−1, `r−1, . . . , k1, `1, k0; otherwise conjugate w by an appropriate power of A to

obtain this form. Let v = (1, 0, 0)T , so that Ak0v = (α, γ, 0)T ∈ L|k0| . By the previous

Theorem, we obtain B`1Ak0v ∈ R|`1|+|k0| and Ak1B`1Ak0v ∈ L|k1|+|`1|+|k0| . Continuing in

this way, we arrive at

wv = AkrB`rAkr−1B`r−1 · · ·Ak1B`1Ak0 ∈ Lm ,
m = |kr|+|`r|+|kr−1|+|`r−1|+ · · ·+|k1|+|`1|+|k0| > 0 .

In particular, wv 6= v so w 6= 1.

We remark that a similar strategy is used in proving the Tits Alternative over R or

C using the metric: one shows w 6= 1 by finding v ∈ V such that wv is metrically very far

away from v.
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