
Information Theory

Boøk II

Multiplication & rational function incoloniental using a single shift register e.g. any multiplication Turbo codes (1993) are a class of codes combinations of gates including used for encoding strams multiplication rational Imiti splitters & interleavers permitations

duplicate permite multiply titelless F(x) C F((x)) eg. for F= #= \$0,13 First method $f(x) = \frac{1+x^2+x^5}{x+x^2+x^4} = \frac{1+x^2+x^5}{x(1+x+x^3)} = \frac{1}{x} \left[\frac{1+x^2+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x+x^3+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x+x^2+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x+x^2+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x^2+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x^2+x^5}{1+x+x^5} \right] = \frac{1}{x} \left[\frac{1+x^2+x^5}{1+x+x^5} \right]$ (a+b) = a+b2 $(a+6)^{4} = q^{4}+6^{4}$ $\frac{1+\gamma^{2}+\pi^{5}}{1+(\pi+\pi^{3})} = ((+\pi^{2}+\pi^{5})(1+(\pi+\pi^{3})+(\pi+\pi^{3})^{2}+(\pi+\pi^{3})^{3}+(\pi+\pi^{3})^{4}+(\pi+\pi^{3})^{5}+\cdots))$ $= (1+\pi^{2}+\pi^{5})(1+(\pi+\pi^{3})+(\chi^{2}+\pi^{6})+(\pi^{3}+\pi^{5}+\cdots)+(\chi^{4}+\cdots)+(\chi^{5}+\cdots)+\cdots)$ $(\chi^{3}+3\chi^{5}+3\chi^{7}+\chi^{9})$ $= (1+x+x^{5})(1+x+x^{2}+x^{4}+\cdots)$ $= 1 + x + x^3 + x^5 + \cdots$ $f(x) = \frac{1}{2} \left(1 + x + x^3 + x^5 + \cdots \right) = \frac{1}{2} + 1 + x^2 + x^4 + \cdots$

F = Fz = 80,13 for the time being
The irreducible (monic) polynomials in Flr]: degree irred. polys 1 x, x+1 2 x+x+1 al polys of degree 2.
lagree ined poys
1 x, x+1 A primitive 2 x x 2 x x 2 x 1 A prive 2
$3 \qquad x^{3} + x + i, x^{3} + x^{2} + i \qquad x^{7} + x^{2} + x^{$
$\frac{4}{1} = \frac{x + x + 1}{x + 1} + \frac{x + x + 1}{x + 1} + \frac{x + x + 1}{x + 1} = \frac{x + x + 1}{x + 1}$
See Mac Williams & Slowne, The Theory of Error - Correcting Codes for more extensive lists of irreducible polynomials. What are all the cyclic (linear) binary codes of length 7? There are exactly 8 of them. (why?) • subspace of F ^T , F: F= F0, 13 • subspace of F ^T , F: F= F0, 13 • under early shift (209, 9, 9, 9, 9, 9, 9) (9, 90, 9, 9) (9, 9) (9, 9) (9, 9)
1) If at all the malie discon bingon ades of length ?? There are proved & of them (why?)
• encode of F^T $F = [0,1]$
eg. $3(0000000)$ f = 3(0000000) f = 3(0000000, 11111113) f = 3(00000000, 11111113) f = 3(00000000, 11111113) $him C + dim C^{\perp} = n$ $him C + dim C^{\perp} = n$
$\int e^{\xi} 0000000, 1111113$ $\dim C + \dim C^{1} = n$
$\left(\begin{array}{c} f^{7} \leftarrow g(x) = 1 \\ f^{7} \leftarrow g(x) = 1 \\ f^{7} \end{array} \right) \left(\begin{array}{c} h(x) = \pi^{7} - 1 \\ f^{7} \leftarrow f^{7} \end{array} \right) \left(\begin{array}{c} h(x) = \pi^{7} - 1 \\ f^{7} \leftarrow f^{7} \end{array} \right) \left(\begin{array}{c} h(x) = \pi^{7} - 1 \\ f^{7} \leftarrow f^{7} \leftarrow f^{7} \end{array} \right) \left(\begin{array}{c} h(x) = \pi^{7} - 1 \\ f^{7} \leftarrow f^{7} $
{ words in F of over weight } = (1100000, 1010000, 1001000, 1000010, 1000010, 1000001) [011100]
Hamming [7,4,3] code #: < 1101000, 0110100,, 1010001> (all gale on 15 of 1101000 spice (25 and))
Swords in F of oven weight 3 = (1100000, 101000, 1001000, 10000, 100000, 100000, 100000, 10000, 100000
The Aug 21 , dim 21=3 is a [734] - code [7
Its devel \$1 [±] , dim \$1 [±] =3 is a [7,34] - code. 1 21 [±] have 1 codeword of weight 0 7 [±] have 1 codeword 0 8 [±] have 1
$\mathcal{X}^{\perp} = \mathcal{X} \cap \langle 1 1 \rangle$

x -1 Ength E Flx	$\chi^{7} - I = (\chi - I) (\chi^{6} + \chi^{5} + \chi^{7})$	$(x-\alpha)(x^{3}+x^{2}+1) = (x-1)(x^{3}+1)(x-\alpha)(x^{3}+1)($	$(x^{2}+x^{2}+i)$ $(x^{3}+x^{2}+i)$ $(x^{2})(x^{2})(x^{2}+x^{2})(x^{2$
actually r+1 F=	Ę	(x-or)be	a)(x-a)
· · · · · · · · · · · · · · · · · · ·	$= \chi (x-1)(x-q_2)(x-q_3)\cdots (x-q_q)$ x ² 0 q-1 distinct roots which are the E = F[w] =	RENTER field daments	= 1, 2, az,, of are the field clamat
If de the is a root	$\frac{q}{q} = \int \frac{1}{\alpha} dx + \frac{1}{\alpha} \int \frac{1}{\alpha} dx + \frac{1}{\alpha} \int \frac{1}{\alpha$	$\xi q_0 + q_1 \psi + q_2 \psi^2 : q_0, q_1, q_2$ $\xi 0, 1, \psi, \psi + 1, \psi^2, \psi^2 + 1, d^2$ as automorphism of H_8 .	$\in \mathbb{F}_{2}$ + α , α^{2} + α +1 \leq
$(u+v)^2 = u^2 + v^2$ $(uv)^2 = u^2 v^2$	Quaring à a	an automorphism of the.	· · · · · · · · · · · · · · · · · · ·
If $f(x) \in \mathbb{F}_{p}[x]$ is noof of $f(x)$.	irreducible of degree d, then	$\mathbb{F}_{p}[\mathbf{x}]/(\mathbf{f}(\mathbf{x})) \cong \mathbb{F}_{p^{d}} =$	$ \begin{aligned} & = \begin{bmatrix} \beta \end{bmatrix} & \text{ where } \beta \text{ is } a \\ & = \begin{bmatrix} q_0 + q, \beta + q_2 \beta^2 + \cdots + q_L \beta^L \end{bmatrix} & q_1 e E \\ & = \begin{bmatrix} q_0 + q, \beta + q_2 \beta^2 + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 e E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^L \end{bmatrix} & q_2 E \\ & = \begin{bmatrix} q_1 & q_2 \beta + \cdots + q_L \beta^$
If in fact IF1 = {0,1, primitive element	β,β ² , β ⁸ ,, β ¹⁻² } then we say and we say fix is a primitive	pisa (p polynomial.	Eq. + 9, B1 9, B+ + 9, B': 9, etf) generates IF, > IF, algebra)
If $f(x) = x^4 + x^3 + x^2 + x$	+) and $\beta \in \mathbb{F}_{16} = \mathbb{F}_{2^4}$ is a row doesn't give all of \mathbb{F}_{16} .	st of $f(x)$ then $\beta^5 = 1$ s	nce β is a root of $f(x)$ $p^{2}-1 = (p-1)(p^{2}+p^{2}+p^{2}+p+1) = 0$
317 P1 P1 P1 9 P1		· · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

There are eight ways to factor $x^7 - 1 = g(x)h(x)$ in $F_2[x]$ In each case $g(x)$ is a generator poly. and $h(x)$ is a parity check poly. for a cyclic code of le In each case $g(x)$ is a generator poly. and $h(x)$ is a parity check poly. for a cyclic code of le over $F_2 = E_3 + F$ Gyclic code $\leftarrow \Rightarrow$ ideals in $F[x]$.	egth 7 1/ (x-1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
BCH bound : a bouer bound for performance of a cyclic code. Consider a cyclic code of length n over F , i.e. an ideal in $F[x]$ with gen. poly. $g(x)$, parity check poly. $h(x)$, $x^n - 1 = g(x)h(x)^2$, $g(x)$ primitive, β root of $g(x)$ in F_r , $r = deg g(x)$, and $\beta \beta^2, \dots, \beta^{-1}$ are roots of $g(x)$, then the code has min. distance $\gamma = s$.	
For Hamming $[7,4,3]_2$ code β root of $g(x) = 1+x+x^3 \in F[\pi]$, $\beta \in \mathbb{F} = \mathbb{F}[\beta]$ Also β^2 by Freshman's Decame	· · · · ·
$\begin{array}{l} 1+\beta+\beta^{3}=0\\ \left(1+\beta+\beta^{3}\right)^{2}=1+\beta^{2}+\beta^{6}=0=1+\beta^{2}+\left(\beta^{2}\right)^{3} \implies 24 \text{ has min. dist. } \geq 3, \end{array}$	· · · · ·
BCH : R.C. Bose Dijen Ray-Chandhuri Hocquenghan	· · · · ·

The Gilbert-Varshamov Bound (GV-bound): a lower bound for existence of good codes min. distance ≥d i.e. d(w,w') ≥d for all w≠w'in C. $A_2(n,d) = max$. |C| s.t. $C \subseteq A^n$, |A| = q with min distance $\geq d$ e= $\lfloor \frac{d-1}{2} \rfloor$ = error-correcting capability. Ball of radius r in A" centered at $0 \in A^n$ has cardinality $|B_{r}^{(j)}| = \sum_{k=0}^{\infty} {\binom{n}{k} (q-1)^k}$ $|\mathbf{1} = |\mathbf{B}_{0}| < |\mathbf{B}_{1}| < |\mathbf{B}_{2}| < \cdots < |\mathbf{B}_{n}| = |\mathbf{A}^{n}| = q^{n}$ balls of radius e centered at adamonds we c are required to be disjoint Hamming bound: Ag(n, d) 5 $\frac{9}{|B_e|}$ $\bigsqcup_{\mathbf{B}_{p}(\omega)} \subseteq A^{n} \implies |\mathcal{C}| \cdot |\mathcal{B}_{p}(\omega)| \leq q^{n}$ In the other direction the CV-bound $A_q(n,d) \ge \frac{2^n}{|B_{d-1}(0)|} \quad so \quad \frac{q^n}{|B_{d-1}(0)|} \le A_q(n,d) \le \frac{q^n}{|B_e(0)|} \quad we$ Proof: Let $C \subseteq A^{\circ}$ be any q-any code with $|C| = A_q(n, d)$. We claim existence proof only $\frac{\bigvee B_{\mu}(w) \ge A^{*}}{\operatorname{But}} \xrightarrow{\operatorname{Codes}} \operatorname{satisfying}_{\text{this condition by greedy construction.}} \xrightarrow{\operatorname{We} \mathcal{C}} \operatorname{But}_{\text{such}} \operatorname{codes}_{\operatorname{sree}} \operatorname{sree}_{\operatorname{sucally not}} \operatorname{protical}_{\operatorname{because}} \operatorname{because}_{\operatorname{wemership}} \xrightarrow{\operatorname{E}} \operatorname{decoding}_{\operatorname{are}} \operatorname{are}_{\operatorname{sot}} \operatorname{efficient.} \xrightarrow{\operatorname{because}} \operatorname{But}_{\operatorname{there}} \operatorname{exists}_{\operatorname{w}' \in A^{*}}, w' \notin \bigcup B_{4}(w) \qquad \text{so} \qquad d(w', w) > d-1 \qquad \text{for all } w \in C.$ But then $C \cup \{w'\}$ has min. distance $\ge d$. This contradicts the maximality of C among all garry codes of length a having min. distance d. $\operatorname{Recomposed} \operatorname{lot}_{\operatorname{suc}} \operatorname{suc}} \operatorname{lot}_{\operatorname{suc}$ Recommended viewing: You Tube videos on coding & info. theory (including deg. gron. codes) by Mary Woottons $S_0 | C | (B_L(0)) \ge |A^n| = 2^n$

Asymptotic version of 6V-bound due to Shannon Fix $0 < S < 1$ $ B_{S_n}(0) \approx A^n ^{\frac{h_2(S)}{2}} = q^{\frac{n_2(S)}{2}}$,	$0 \leq h_{CS} \leq 1.$
1 18 c > 1 c > 1 c > 1	· · · · · · · · · · · · · · · · · · ·
$\frac{\log_2 B_{S_n}(0) }{ t_i _{S_n}(0) } \xrightarrow{n n_2(s)} n n_2(s)$ $\frac{\log_2 B_{S_n}(0) }{ t_i _{S_n}(0) } \xrightarrow{l n_1(s)} 1 a n \to \infty.$	then y and o - (y, t)
$\log_{2} (B_{S_{n}}(o)) \sim nh_{q}(\delta).$	· · · · · · · · · · · · · · · · · · ·
More precisely $nh_2(\delta) - o(1) \leq \log_2 B_{\delta n}(0) \leq nh_2(\delta)$	· · · · · · · · · · · · · · · · · · ·
The gary entropy function bivary entropy function $h_2(q) = -\delta \log_2 \delta - (1-\delta)$ Eq. consider a random stream of information coming from lett with letter x; having forguency $\frac{17}{4}$ ($2 \le i \le q$) δ (1-p single class form	$\log_{12}(1-3) = \partial \log_{12} \overline{s} + (1-3) \log_{12} \overline{1-s}$ Ers in A, [A]=g, A = $\{x_1, \dots, x_q\}$
with letter x_i having frequency p_i^T $(2 \le i \le q)$ & $(1-p)$ single char.form H (this stream) = $\sum p \log \frac{1}{p} = -\sum p \log p = -(1-p) \log (1-p) - (q_i) \frac{p}{q_i}$ b	$b) + f_{1} + f_{1} + \dots + f_{r} = 1.$ $bg + f_{r} = 1 \ bg (g_{r}) - p \ bg - (r_{p}) \ bg (1-p)$

 $h_{2}(S) = S \log_{2}(q-1) - S \log_{2} S - (1-S) \log_{2}(1-S)$ h (9=2)Singlaton bound : d ≤ n-k+1 increasing 9 4 51-4+4 $h_q(x) = x \log_q (q-1) + \frac{\log_2}{\log_q} h(x) \qquad \text{let } x \to 1^-.$ hg(x) -> logg(q-1) as x-71. R+S ≤ 1 for long codes $(n \gg 0)$ over a fixed alphabet |A|=q, we ansider the information rate $R = \frac{\log_2 |C|}{m} = \frac{k}{n}$ in the case of an [n, k] = -i deSingleton bound relative distance & 1 rolative error-correcting copubility $\frac{e}{n} - \frac{d}{2n} = \frac{S}{2}$ For 9249 we have a new lower bound for asymptotically good explicit codes using elgebraic geometry (Tsfasman, Vlahut, Zink) $R \ge 1 - h_{g}(S)$

the 1982 theorem literally says: There exists a family X: of algebraic curves over the (i=1,2,3,...) such that X: has n:+1 (rational) points over the genus g: with $\frac{g_i}{n_i} \rightarrow \frac{1}{\sqrt{2}-1}$ as $i \rightarrow \infty$. The Reed-Slomon codes come from the singlest curve of all, the projective line P'F = FV {00} (F: field) of genue O. On a curve X, $\Omega_X = \{ \text{smooth global differential 1-forms} \}$ is a vector space of dimension dim $\Omega_X = g$. The number of F_{y} points on the curve (if it's defined over F_{y}), N_{y} , satisfies $\left| N_{y} - G_{y} i \right| \leq 2g \sqrt{g}$ Hose-weil bound. Eq. P'F has N=q+1 points, g=0 Joseducible come: y=x² (b,t^{*}) te F plus one point et infinity q+(points $y^2 - x^2 = (y + x)(y - x) = 0$

Smooth curve of dagree des has genus $g = \binom{3-1}{2} = 1$ is topologically a torus. (elliptic curve)	•
y ² = cubic in x with no repeated roots is an elliptic curve.	•
$y^{2} = x^{3} - x = x(x+i)(x-i)$	•
g=1 (torus) $H \cdot W$ bound : over H_2 the number of points satisfies $[N - (q+1)] \le 2\sqrt{q}$ $q > 3$ $q = prime p \ge 5$ A = 1	•
$N = q + 1 \text{if } q = prime p \equiv 3 \mod 4$ $q + 1 \pm 8 \qquad \text{if } q = prime p \equiv 1 \mod 4$ $ \epsilon \leq 2 \sqrt{q}$	•
Projective line $P'F = F \cup Foo} = X$ who consider rational functions $F(x) \in F(X)$ defined on a curve X (e.g. $X = P'F$)	•
Eq. F= Fq = \$0,1,2,3,4,5,63 formal integer linear combinations of points A,B,C,D E,F,6,00 m X are called divisors as a book bapping device for keeping track of zeroes and poles of functions on X.	•
eg. $f(x) = (x-1)(x-2)(x-5) = x^3+3x^2-x-3 = x^3+3x^2+6x+4$ has simple zeroes at B,C,F and a triple pole at Near ∞ , $z = \frac{1}{x}$; $f(x) = f(\frac{1}{z}) = \frac{1}{z^2} + \frac{3}{z^2} + \frac{6}{z} + 4 = \frac{1+3z+6z^{2}+4z^3}{z^2}$ so f has a triple pole at $z = \frac{1}{z^2}$. The divisor of $f(x)$ is $B+C+F-3\infty =: Div(f)$ (sometimes abbreviated (f)). (i.e. at $x = \infty$).	8
	•

eg

More complicated: $f(x) = \frac{(x-i)^2(x+3)^4(x+5)}{(x+2)(x+i)^3}$ Div $(f) = 2B + 4E + C - F - 3G - 3\infty$	• •
$z = \frac{1}{7}$	
$f(x) = f(\frac{1}{2}) = \frac{(\frac{1}{2}-1)^2(\frac{1}{2}+3)^2(\frac{1}{2}+5)}{(\frac{1}{2}+2)(\frac{1}{2}+1)^3} \cdot \frac{2^7}{2^7} = \frac{(1-2)^2(1+32)^4(1+52)}{(1+22)(1+2)^3 \cdot 2^3} + \text{triple pole at } 2=0 (i.e. \text{ at } x=\infty)$	
The degree of $D = \geq m_i P_i$ is $\deg D = \geq m_i$, $(m_i \in \mathbb{Z})$	
For any $f(x) \in F(x)$, day $(Div f) = 0$. (equally many plas as zeroes)	
Given a divisor $D = \sum_{i=1}^{m} P_i - \sum_{j=0}^{m} Q_j$ $(m_i, n_j \ge 1)$	
we consider the vector space $\mathcal{J}(D) = \{f(x) \in F(X)\}$: I have a zero of multiplicity at least m at P.	در د
f has a pole of order at most n, at Q;,	
In the case of PF = FU \$00} consider D = k00 day D = k. d(k00) = { f(x) \in F(x) : \$ has a pole of order at most k at 00; no other polar } dim L(k00) = k+1. L(D) = { f: Dirf + D = 0 } L(-k00) = { polynomials in x of degree at most k } = { q_0 + q_1 x + q_2 x^k : q_1 \in F	•
dim L(koo) = k+1. L(D) = {f: Divf + D > 03 L(D) = { f: Divf + D > 03 L(D) = { f: Divf + D > 03	•
$L(-koo) = ipognomials in a single at most k \leq i \leq $, S , •
The Riemann-Roch theorem gives a relation for determining. $l(D) = \dim L(D)$.	• •
l(D) - l(K-D) = deg D - g + 1 where K is a "canonical divisor" non-negative integers $l(D) = deg D - g + 1$ is Riemann's bound	• • •

The genus of a smooth curve X is the dimension g= dim S2x where Dx differential 1-forms on N.	the second second
eg. $X = \text{projective line } p \neq \text{over } F$, $PF = + \sqrt{2005}$ A 1-form here the form $W = \text{fir})dx = f(\frac{1}{9})d(\frac{1}{9}) = -\frac{f(\frac{1}{9})dy}{y^2}$	$\frac{1}{x}$, $x = \frac{1}{y}$ $\frac{d(\frac{1}{y})}{dy} = -\frac{1}{y^2}$
On PF there is no (nonsero) global 1-form IF f(x) is a poly of degree k in x then it have a pole of order k at	$d(\frac{1}{y}) = -\frac{dy}{y^2}$ so (and kzennes in F)
So $w = f(x)dx$ has a ple of order k+2 at ∞ . $\frac{1}{7^2}dx$ has no pole at ∞ but it has a double pole at the origin. $\frac{1}{7^2}dy = -dy$	· · · · · · · · · · · · · · · · · · ·
Div $\omega = \mathcal{E}(\text{zeroes of } \omega) - \mathcal{E}(\text{polos of } \omega)$ the divisor of ω	
For $w = 1$ -form on P'F, deg $(w) = -2$ (2 more poles than divisors coming $\mathcal{Q}_{p'F} = \{0\}$, $g = \dim \mathcal{Q}_{p'F} = 0$.	ting nultiplicity)
$\Sigma_{pf} = \{0\}, g = \dim \Sigma_{pf} = 0.$ For an elliptic curve e.g. the curve $\{i: y = x^2 - x \ has \ \Omega_y = span \{w\}$	(w is a global smooth 1-form)
$\Sigma_{p'f} = \{0\}, g^{\pm} \dim \Sigma_{p'f} = 0.$ For an elliptic curve e.g. the curve $\{i, j^{\pm}, x^{2}, x\}$ has $\Omega_{y} = span \{w\}$ $g^{\pm} \dim \Omega_{y} = i.$ First, why is $\{1, q\}$ smooth cubic curve? $V_{f=0}$	(ω is a global smooth 1-form) $y^{\frac{3}{2}}\pi^{3}$ is singular at G_{0})
For an elliptic curve e.g. the curve $\chi: y = \chi^2 - \chi$ has $\Omega_{\chi} = span \{w\}$	(w is a global smooth 1-form)

· · ·	J f	•	y	2 =	- 1	2	x2ª	•	 . (poi	ts	• • •	; ,×, (, २	;) ;)	.in	lo	En C	gar	Low	00		δith. √s		2≠0	· ·	•	· · ·	•	•	· · ·	- - - - - - - 	i i i i i i i i i i i i i i i i i i i	- - - - - - - - - - - - - - - - - - -		•	•	• •	•	· · · · · · · · · · · · · · · · · · ·
• •						• •	-	2	, ₹⊃			di.	vid		by		y	b	Jō	t	₹=	רא ^ב א	· · ·	•	•			2		-						•	•	• •	•	· ·
	9	2=	x- =	-x d(x3-	(= 0 (x)	•	•	· · ·	•	•	•	•	· ·	•	•	· ·	•	• •		• •		· · ·	•	•	· ·	•	y = (0	0	x^{3} -	त्रपु व	2 50	moe	tL	•	Poi	at		•	· ·
		3	.		· 2 -	2)	1.						20	ly.		. 0	lx :																				•	• •		• •
 	ء -ري	y . 3x	540	- (به : •	> x =	dx 2y) æj		The	is	eg	qua	3x to	-2ª	- 1)	1	ey nese	rve	d	m	ter	20	ala		Necto	lt:	pCe	s .	l×	, y)	• • • •	->	• • •	λ×	à	y,)	1 1 1	• •	(<i>À</i> #	₽)
 	ء جر	- y ° - 3x	Jy	- (- , =	> X =	-1 dx 2y		4 . 	Tle	ÌS.	eg	zua	- Arice		13	1	ey rese	rve	d	w	ler)2)2	ala		NeCL i	lt;	PCe	8 · ·	(×	, y)	· · ·	->		λ×,		y)) I	• • •	• •	(<i>À</i> #	₽)
· · ·	ء جر	y ° 3x	Jy J	- (- , : - , :	> X =	-1 dx 2y		4 .	<u>l</u> le	is	eg	qua	3x	-2°	1) 1)	1	ey nese	rve	d a	~	ler) 2 1 1 1 1 1 1 1 1 1 1	ala		Necro C	Li:	pCe	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1×	, y }	• • •		• (λ*,		y)) 1		· · ·	(<i>À‡</i>	'∍)
· · ·	ء جري ا	y	Jy J	- (- , -	> x = -	-1 dx 2y			<u>T/e</u>	J.		lua	MA CONTRACTOR			2		rve			ler) 2	ala		Neccu	Lt;	pCe		1×	, y)	· · · · · · · · · · · · · · · · · · ·		• (λ×,		y ,)		· · ·	(),#	₩
· · ·	ء جري •	9°		- (- , - , -	 - - -	-1 2-y			Tle	З		zua	3 A in			1	y vese	rve			ler		ala			Li:	рСе С	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1×	, y)	· · · · · · · · · · · · · · · · · · ·		• (λ×,		y ,)		· · ·	(À. #	5
· · · · · · · · · · · · · · · · · · ·	ء جري			- (- (- (- (- ())) - ()) -	- -	-1 2-3			τ <i>ί</i> ε	۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲		2 ^{ua}	3x			2 1 1 1		rve			ler		ala			Li.			۲×.	, y jê				λ×,		y				•)
· · · · · · · · · · · · · · · · · · ·	2 جن ا	3		- (- -				<u>T/e</u>	<u>کی</u> در د	e	zua	She was			7		r νe			ter		ala			Lt:	рСе С			, yrð				<u>у</u> х) ,		y			 (A ≠ A A<th></th>	
· · · · · · · · · · · · · · · · · · ·	2 بیر بر بر بر			(2 X	-/ 2-y				ö	e	zua	IN SECOND			7		rve			ler		ala			et:	ple			, y €			• • • •	λx		y		· · · · · · · · · · · · · · · · · · ·		b
	2 	3		- ((2 X	dx: 2.3			ΪĹŧ	201 100 100 100 100 100 100 100 100 100			IN CONTRACT			2		rve			ler		ala					3 1 1 1 1 1 1 1 1		, y)				(λ *,		y ,		· · · · · · · · · · · · · · · · · · ·		
		33		- ((> X 				The	3			No. of the second secon		1	2		'nΰ e			ler		ala							, y)				(J×)		y			(),#	

·	She	h	~0	n's	া	r rloi	en	.	for		nois	5.4	cha	mne	ls.												0					
In	ag	ine	۱. د آ	a	plipe	- i-		shi	ch	we	2 (an	sen	d'	1:6	iter	of u	vator	per	- Se (ond.	• •		-	- (<u></u>	<u></u>).			• •
	D	••••	0										10-1	F		in solo	in a -s A		t al	ch	leo /	6H	gra	sel	is	Cas	ried	al	long			
N	m	-	for	. #	re.	sam	e.	Pi	pe	im	age	he i	That	74	α (~ .	erne moa	n a	2.1			J.	litor	() of	2 6	ter	dh	C	ZCON	l.d.	Ca-	be	
a	k	A [ia	te	of .	8	lite	25	per	4 1 . (sec	and.		.cu	S . '	,			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- 2	1.000		-	~~~	Γ.					• •	• •
+	ans	smi	the	Lb	1	this	Sa	me		char	me	C/pi	pe.									• •					•					
• •	4`	inia	Zir	glis		·	he	Sa	nie	- 3	imp	listi	c: 9	easo	nin	<u>م</u>	appl	103	10 5	end	into	mo	tion	1R	elia	bly .	•					• •
• •	Ċ			d -()								• •				0		1	і. О	0 0	• •		/ 1	4			La		• •		• •	• •
Su	pp	BR	. P	ve -	for	esni	t	ind	Orm	neti	m	vis 1	ing	, প	rigs	of	1 0	mbo		From	an	all	hohe	λ.	~ /.	- (#	u;= 	Ľ				
H	ંત	ber	K.	wer	e n	on	oise	2	M	ec	onle	l re	liabl	y.	Sen	Å.	1.7	han.	tor	- Pe	he	्र ्	time	•	• •							• •
					•				i.			JP.		V	P	1	wing	. IEUG Las	InA)		ate	h	(E)	1	char	acters	pe	ri	mit	tim	2)	• •
]	¥	ins	Qad	(e	x101	- 19	5 N	100	MC	ea	5	, inc	Cito			1	C)		2	<u> </u>				. •					
		. 10	-		1													in Ma	_					101								
the	in .	-16	e 1	rall	at	wh	ich		set	ml	int	orm	at o	₩ ·	can	. 69	e. rei	la mi	- 11	ausai	led (.05	n212		• •			• •	• •		• •	• •
the Ta	n T	-th Kis		rate lian	at mel	wh	ich	. i asy	nset mþ	nl blic	int	orm y	@t.0 [-	m h 18	can S	cha	ractor	10 ml	f ^T per	unit	med (ve.	M212		• •		•	•••		•	• •	
the Ta	n 7	this		rale lian	at ~el	vst. iš	ich.	. i asy	nţ	ul botic	int all	orm J	et 6	4.15	con :)	cha	e rel racta	10 900	f per	unit	Hed (ue.	M2(2)		• •	· ·	•	· ·	••••	•	· · ·	· ·
												· .			ca. :)										· ·	· · ·	•	· · ·	• •	•	· · ·	· ·
												· .	et 10 1-		сал :>										· · · · · · · · · · · · · · · · · · ·	· · ·	•	· · ·		•	· · ·	· · ·
												· .			(<i>a</i> .		e rei nacter !~ Stin								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	
												· .													· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	
												· .													· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • •		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
) =	n!	n-6)!				! ~ (Stirl	([*] ²)√2 Ling's	For	· · · · · · · · · · · · · · · · · · ·		M	57 (0)	•	· · ·	· ·	•	· ·	• •	•	· ·	
							[q-1)) =	n!					1. ~ (Stin	(¹ / _e) 12 Ling's	For			M	700	•		· · ·	•	· · ·	· ·	•	· · ·	· ·
							(q-1)) =	n!	n-6)!				! ~ (Stirl	(=)12 hing's	For	· · · · · · · · · · · · · · · · · · ·		M	7 0	· · · ·		· · ·	•	· · ·	· · ·	•	· · ·	· · ·
							<u>(</u> q-1)) =	n!	n-6)!		· · · ·				TUN				7 0			· · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · ·	· · · · · · · · · · · · · · · · · · ·
							(q-1)) =								For				27 00			· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Back to Shannon's first theorem: optimal compression of information for noiseless chandle Source of information is a condom variable $X = \begin{cases} x_2 & \text{with prob. } \\ x_2 & \text{with prob. } \\ x_2 & \text{variable} \end{cases} 0 \le p_i \le 1, \ \ge p_i = 1$
We ask for the optimal compression of its. from this source using strings over alphabet A, $ A =q$ A code for this source is a map X -> A*
$C: \xrightarrow{\chi_1} \longrightarrow w_1 \in A^{l_1}$ i.e. w_1 is a word in A^+ of length l_1 : $X_2 \longrightarrow w_2 \in A^{l_2}$
The expected kingth of C(X) is $\stackrel{*}{\succeq}$ p: l;
Theorem $\sum p_i l_i > H(X) := \sum p_i \log_2 \frac{1}{p_i} = -\sum p_i \log_2 p_i$. Moreover, we can asymptotically achieve
compression having $\sum p!$ as close as desired to $H(X)$. Compression having $\sum p!$ as close as desired to $H(X)$. Compression having $\sum p!$ as close as desired to $H(X)$.
C must be an injective map (the code is uniquely decodable). We will discuss the proof under the strongen assumption that C is prefix free: none of the codewords w,, why is a prefix (initial substring) of any of the other codewords.
lemma (Kratts megnakry) Z I ≤ 1.
Proof Elements in [0,1] (real interval) can be written in base q as infinite strings over A as
$0, q, q_2, q_3, q_4, \cdots, q_j \in A$
Each $w_i \in C(X)$ determines a subinterval of $[0,1]$ given by all real numbers whose first l_i "digits" agree with w_i i.e. $r \in [0,1]$ s.t. $r \uparrow Q_i = w_i$. These real numbers form a subinterval of width $\frac{1}{2}\theta_i$.
These subintervels are disjoint.

Proof $y = \frac{y}{y} = \ln x$ $\ln x \le x - i$ for all $x > 0$. $\log_{q} x = \frac{\ln x}{\log_{q}}$ because $\ln \frac{1}{p_{1}q^{0}} \le \frac{1}{p_{1}q^{0}} - 1$	Le $x = q^{y}$, $y = log_{q}x$ $lnx = y lnq = y = log_{q}x = \frac{lnx}{lnq}$
$\begin{array}{l} P_{i} \ln \frac{1}{P_{i} q^{1}} \leq \frac{1}{q^{1}} - P_{i} (1 \leq i \leq k) \\ \underset{i=1}{\overset{k}{\geq}} P_{i} \ln \frac{1}{P_{i} q^{1}} \leq \underset{i=1}{\overset{k}{\geq}} \frac{1}{q^{1}} - \underset{i=1}{\overset{k}{\geq}} P_{i} \leq D , divide \\ \underset{i=1}{\overset{k}{\geq}} P_{i} \log_{q} \frac{1}{P_{i} q^{1}} \leq O & = 1 \end{array}$	2 both sides by lug > 0
$\sum_{i=1}^{k} P_i \left(\log_2 \frac{1}{p_i} + \log_2 \frac{1}{q_i} \right) \leq 0$ $\sum_{i=1}^{k} P_i \left(\log_2 \frac{1}{p_i} + \log_2 \frac{1}{q_i} \right) \leq 0$ $\log_2 \frac{1}{q_i} = -l;$ $\sum_{i=1}^{k} P_i \log_q \frac{1}{p_i} \leq \sum_{i=1}^{k} P_i l_i$	
H(X) E(lingth of a codeword)	. .

autline of Shannon's second theorem (source for noisy channel	(2
Outline of Shamon's second theorem (source for noisy channel If $0 \le \epsilon \le 1$ then $ B_{\epsilon_n}(v_0) \approx q^n h(\epsilon)$ $h(x) = x \log_2(q_1) - x$	$\log_{q} x = (1-x)\log_{q}(1-x)$
$\{v \in A^{n}: d(v, v_{o}) \leq \varepsilon n \}$	y= hg(x)
$\pm \log_{q} B_{q}(v_{o}) \sim h_{q}(\varepsilon)$ as $n \rightarrow \infty$ (q fixed)	$\frac{h_{1}h_{2}}{1-\frac{1}{2}} + \frac{h_{1}h_{2}}{1-\frac{1}{2}} + \frac{h_{2}h_{2}}{1-\frac{1}{2}} + \frac{h_{1}h_{2}}{1-\frac{1}{2}} + \frac{h_{1}h_{2}}{1-2$
Harming Bond: for C < A" e-error correcting	
$ \mathcal{C} B_e \leq (A^*) = q^*$	relative error
$\log_{q}(e) + \log_{q} B_{e} \leq n$	relative error e= En (0 <e<1) fixed</e<1)
$R = \frac{1}{n} \log_{10} C + \frac{1}{n} \log_{10} B_0 \leq 1 \implies R \leq 1 - \frac{1}{n} \log_{10} B_0 $	d = 2e or 2e+1
As $n \rightarrow \infty$, q fixed info. rate $R \leq 1 - h(\varepsilon)$	$C = \left\lfloor \frac{d^{-1}}{2} \right\rfloor \approx \frac{d}{2}$
If \mathcal{C} is linear, $\dim \mathcal{C} = k \leq n_1$ into rate $\frac{k}{n} = \frac{1}{n} \cdot \log_q(q^k) R_1^2$	d = Sn relative distance
The state of the s	
	· · · · · · · · · · · · · ·
	<u>A</u> · · · · <u>8</u> · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	

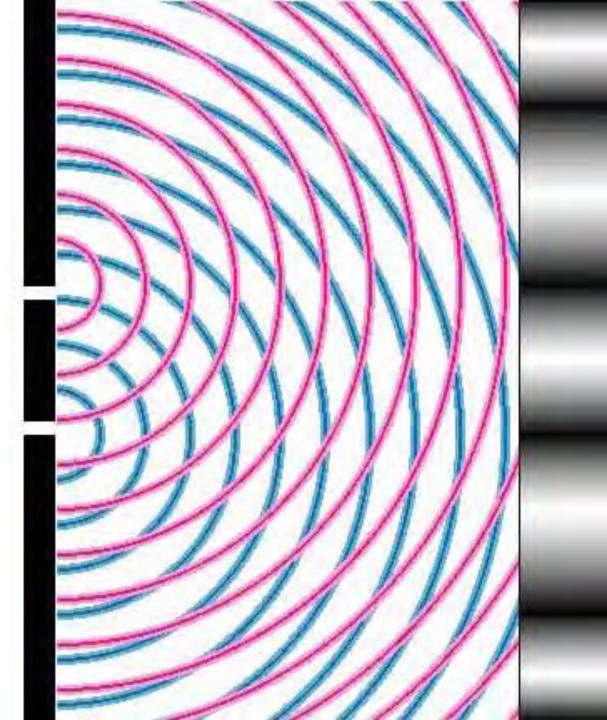
Quentum Information - quantum mechanics (the playsical foundations) - quantum entanglement, tensors - quantum teleportation															•	• •																											
				_	o		h			01	ta	10	Ĵ.	M	تده	+			+	ens	Sor	5																					
					luc						9 1	0	1 a			Č.	1																										
				_	qu	an	tc	m	. 7	el	ep	تبح	10	he	n																												
					L		Ŀ			20			50	20	ha												ج.																
				-	qu	an	.(~	· ·			31	0		1	. (-		.9	in	a	~t	s	~:	(40	ri	n ct	5											• •			• •	
				<u> </u>	a	ran	-ti	in	4	C	m	pü	te	tio	m.	~		٠.۲	1		. 1			÷	<u> </u>						0 -						•		• •			• •	
				•	qu qu qu qu		L		•	A F			í.	-n	bot	70-		٠q	w	q.	A	in	<u>ــــــــــــــــــــــــــــــــــــ</u>	٦.	w	Tic	a	. .	m	ac	Um	es				• •	•		• •			• •	
				Ç	qu	as	at v	سبه	-	Ç	•••		ę		باحب	10.		- I	/	•						1	0			• •		•	•			• •			• •			• •	
• •		•	•	•	• •				•	•	• •	•		•	• •		•			•	•		•		•	•	-	•		• •			•		•	• •			• •			• •	
• •			•	•	• •	•	•		•	•	• •	•		•	• •		•				•	• •	•		•			•	•	• •						• •			• •			• •	
			•		• •					•					• •							• •	•		•			•										•	• •			• •	
					• •										• •																						•		• •			• •	
				•	• •					•	• •				• •											•				• •			•			• •	•		• •			• •	
			•	•	• •	•	•		•	•	• •	•		•	• •		•			•	•		•		•	•		•	•	• •			•		•	• •	•		• •			• •	
			•	•	• •	•			•	•	• •	•		•	• •		•				•	• •	•		•	•		•	•	• •			•		•	• •			• •			• •	
• •				•	• •	•		•	•	•	• •			•	• •			•		•	•	• •		•		•			•	• •			•	• •	•	• •			• •			• •	
• •			•		• •	•			•	•	• •			•	• •			•			•	• •			•				•	• •					•	•			• •			•	
							•					•																															
																																										• •	

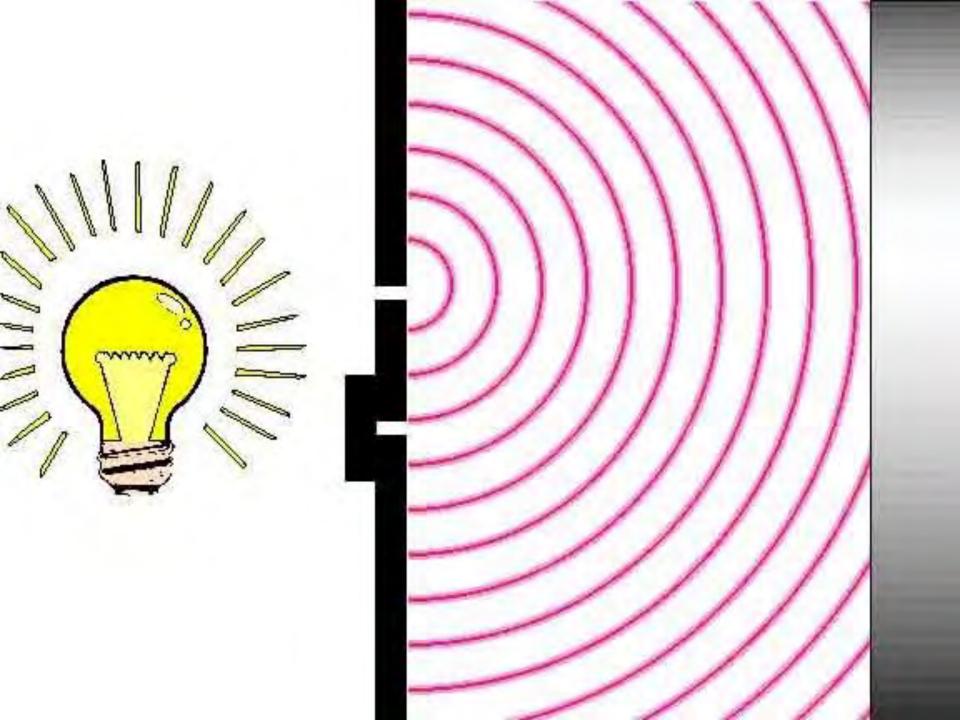
Quantum Information and Computation

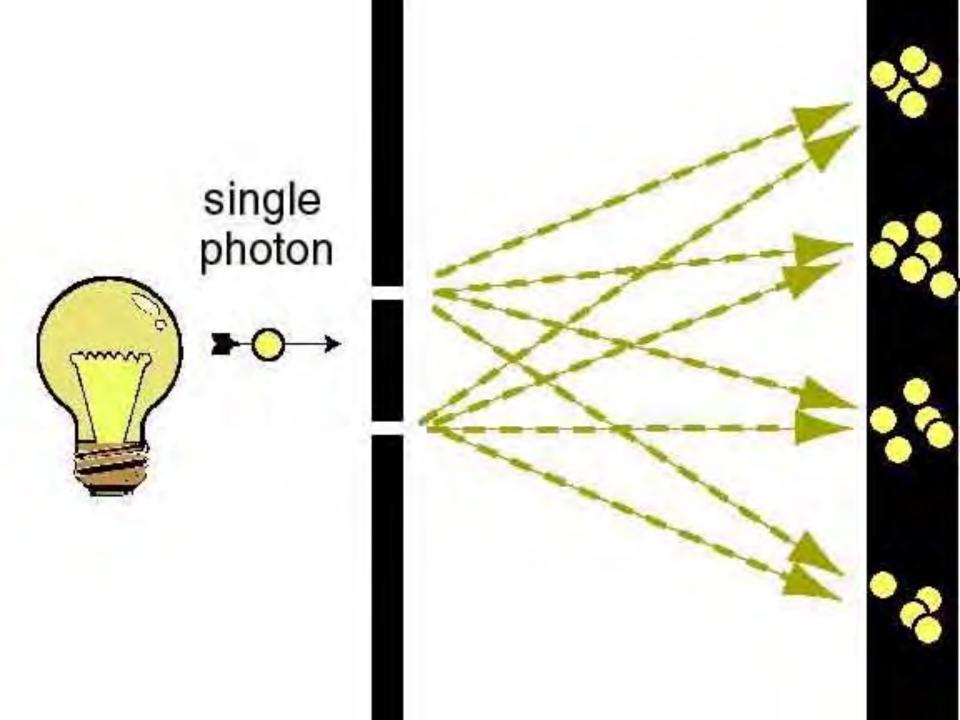
Eric Moorhouse

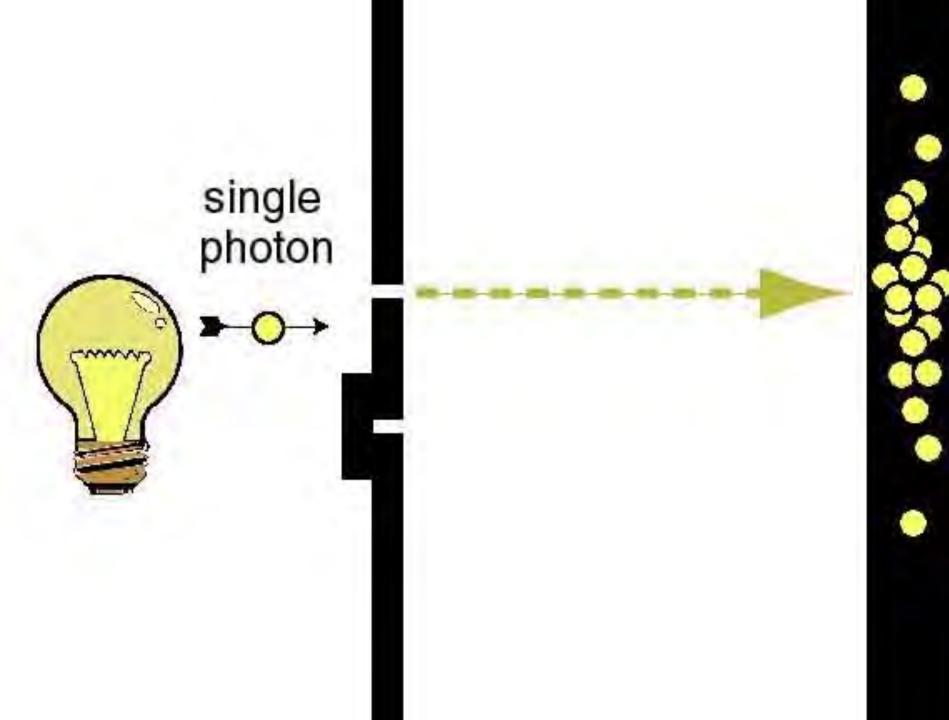
Department of Mathematics University of Wyoming

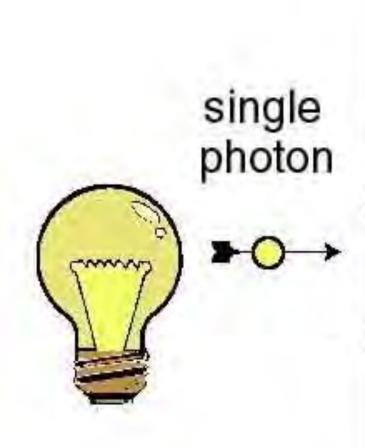

Atractions Suited is Problems suited for Conventional Q Computers S Computers

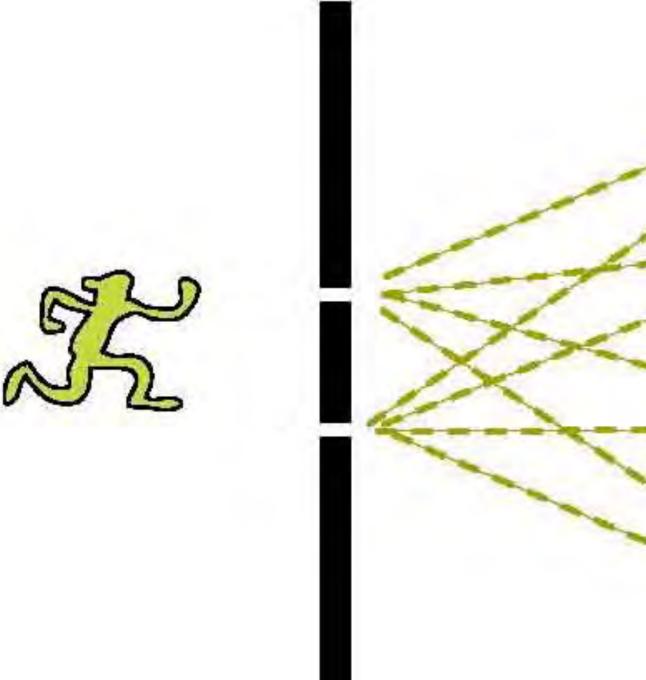

ntractible Problems

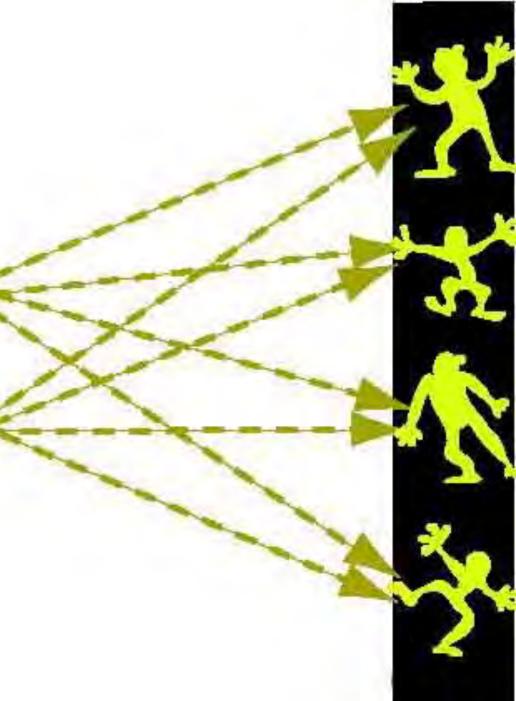

Peter Shor

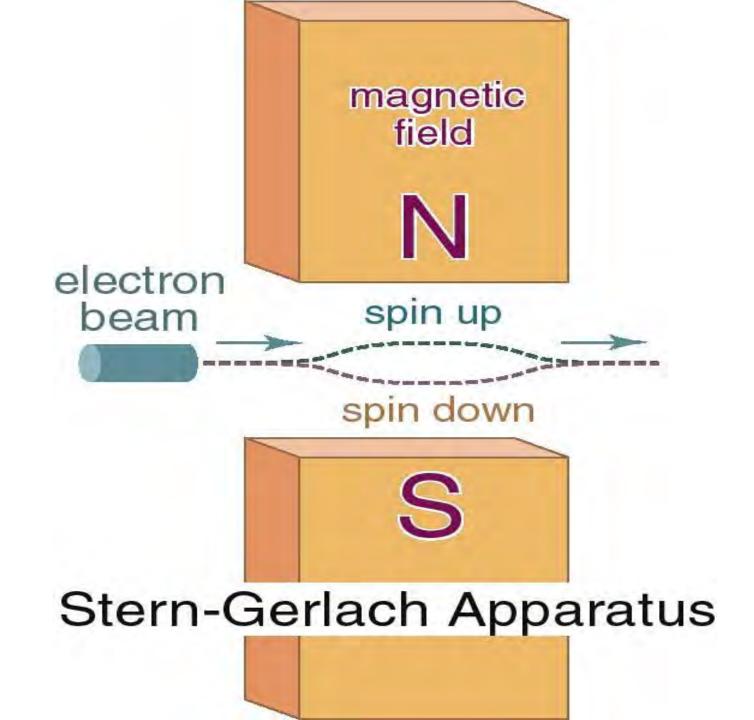



A Crash Course in Quantum Mechanics









Prediction of Classical Mechanics *(incorrect)*

