
Information Theory

Boøk II

Multiplication & rational function incoloniental using a single shift register e.g. any multiplication Turbo codes (1993) are a class of codes combinations of gates including used for encoding strams multiplication rational Function splitters & interleavers permitations

duplicate permite multiply titelless F(x) C F((x)) eg. for F= #= \$0,13 First method $f(x) = \frac{1+x^2+x^5}{x+x^2+x^4} = \frac{1+x^2+x^5}{x(1+x+x^3)} = \frac{1}{x} \left[\frac{1+x^2+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x+x^3+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x+x^2+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x+x^2+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x^2+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x^2+x^5}{1+x+x^5} \right] = \frac{1}{x} \left[\frac{1+x^2+x^5}{1+x+x^5} \right]$ (a+b) = a+b2 $(a+6)^{4} = q^{4}+6^{4}$ $\frac{1+\gamma^{2}+\pi^{5}}{1+(\pi+\pi^{3})} = ((+\pi^{2}+\pi^{5})(1+(\pi+\pi^{3})+(\pi+\pi^{3})^{2}+(\pi+\pi^{3})^{3}+(\pi+\pi^{3})^{4}+(\pi+\pi^{3})^{5}+\cdots))$ $= (1+\pi^{2}+\pi^{5})(1+(\pi+\pi^{3})+(\chi^{2}+\pi^{6})+(\pi^{3}+\pi^{5}+\cdots)+(\chi^{4}+\cdots)+(\chi^{5}+\cdots)+\cdots)$ $(\chi^{3}+3\chi^{5}+3\chi^{7}+\chi^{9})$ $= (1+x+x^{5})(1+x+x^{2}+x^{4}+\cdots)$ $= 1 + x + x^3 + x^5 + \cdots$ $f(x) = \frac{1}{2} \left(1 + x + x^3 + x^5 + \cdots \right) = \frac{1}{2} + 1 + x^2 + x^4 + \cdots$

F = Fz = 80,13 for the time being
The irreducible (monic) polynomials in Flr]: degree irred. polys 1 x, x+1 2 x+x+1 al polys of degree 2.
lagree ined poys
1 x, x+1 A primitive 2 x x 2 x x 2 x 1 A prive 2
$3 \qquad x^{3} + x + i, x^{3} + x^{2} + i \qquad x^{7} + x^{2} + x^{$
$\frac{4}{1} = \frac{x + x + 1}{x + 1} + \frac{x + x + 1}{x + 1} + \frac{x + x + 1}{x + 1} = \frac{x + x + 1}{x + 1}$
See Mac Williams & Slowne, The Theory of Error - Correcting Codes for more extensive lists of irreducible polynomials. What are all the cyclic (linear) binary codes of length 7? There are exactly 8 of them. (why?) • subspace of F ^T , F: F= F0, 13 • subspace of F ^T , F: F= F0, 13 • under early shift (209, 9, 9, 9, 9, 9, 9) (9, 90, 9, 9) (9, 9) (9, 9) (9, 9)
1) If at all the malie discon bingon ades of length ?? There are proved & of them (why?)
• encode of F^T $F = [0,1]$
eg. $3(0000000)$ f = 3(0000000) f = 3(0000000, 11111113) f = 3(00000000, 11111113) f = 3(00000000, 11111113) $him C + dim C^{\perp} = n$ $him C + dim C^{\perp} = n$
$f = \{0,000000, 11,11,1,1,1,1,1,1,1,1,1,1,1,1,$
$\left(\begin{array}{c} f^{7} \leftarrow g(x) = 1 \\ f^{7} \leftarrow g(x) = 1 \\ f^{7} \end{array} \right) \left(\begin{array}{c} h(x) = \pi^{7} - 1 \\ f^{7} \leftarrow f^{7} \end{array} \right) \left(\begin{array}{c} h(x) = \pi^{7} - 1 \\ f^{7} \leftarrow f^{7} \end{array} \right) \left(\begin{array}{c} h(x) = \pi^{7} - 1 \\ f^{7} \leftarrow f^{7} \leftarrow f^{7} \end{array} \right) \left(\begin{array}{c} h(x) = \pi^{7} - 1 \\ f^{7} \leftarrow f^{7} $
{ words in F of over weight } = (1100000, 1010000, 1001000, 1000010, 1000010, 1000001) [011100]
Hamming [7,4,3] code #: < 1101000, 0110100,, 1010001> (all gale on 15 of 1101000 spice (25 and))
Swords in F of over weight 3 = (1100000, 1010000, 1001000, 1000100, 1000100, 1000100, 10000, 100000, 10000, 100000, 10000, 10000, 10000, 100000, 10
The Aug 21 , dim 21=3 is a [734] - code [7
Its devel \$4 [±] , dim \$4 [±] =3 is a [7,34] - code. 1 24 [±] have 1 codeword of weight 0 7 4 [±] have 1 codeword of weight 0 4 [±] 01([±] ola 5-2,47)
$\mathcal{X}^{\perp} = \mathcal{X} \cap \langle 1 1 \rangle$

$x^{2}-1 \in F[x]$	$\chi^{\frac{3}{2}} - i = (x - i) (x^{6} + x^{5} + \chi^{4} + i)$	$\chi^{3} + \chi^{2} + 1 = (\chi - 1)(\chi^{3} + \chi + 1)$	$(x^{3}+x^{2}+i)$ - $(x-g)(x-g^{2})(x-g^{4})$
actually x7+, F= 15	• • • • • • • • • • • • • • • • • • •	(X-a)(x-a)	(x-a) [] [] [] [] [] [] [] [] [] [
· · · · · · · · · · · · · · · · · · ·	= $\chi(x-i)(x-q_2)(x-q_3)\cdots(x-q_3)$ χ^2_0 g_{-i} distinct sosts which are the new $E = F[w] = S_1$	q=0, q=1,	a, az,, og are the field clanat
If all the is a root of	$\begin{array}{c} x^{3} + x + 1 \\ z \\$	$P_0 + q, q + q_2 q^2 : q_0, q_1, q_2 \in$ $P_0, I, q, q + I, q^2, q^2 + I, q^2 + q^2$ automorphism of H_8 .	f_{2} $\alpha^{2}+\alpha+1$
$(u + v)^2 = u^2 + v^2$ $(u + v)^2 = u^2 v^2$	Squaring is an	automorphism of #8.	· · · · · · · · · · · · · · · · · · ·
If $f(x) \in F_{f}[x]$ is root of $f(x)$.	irreducible of degree d, then	$\mathbb{F}_{p}[\mathbf{x}]/(\mathbf{f}(\mathbf{x})) \cong \mathbb{F}_{p^{d}} = \mathbb{F}_{p^{d}}$	$\begin{bmatrix} \beta \end{bmatrix} \text{ interve } \beta \text{ is a} \\ \begin{bmatrix} q_0 + q_1 \beta + q_2 \beta^2 + \cdots + q_L \beta^L \\ \end{bmatrix} = q_1 e F_2$
If in fact IF1 = {0,1, p prinitive element	β ² , β ⁵ ,, β ^{f-2} 3 then we say β and we say fix) is a primitive pol	is a as an a growinal.	$\{a_0+a,\beta+a_2\beta+\dots+a_{d-1}\beta^{d-1}:a_i\in F_j\}$ meretes $F_i \supset F_j$ lgebra)
If $f(x) = x^4 + x^3 + x^2 + x + x^3 + x^2 + x^3 + x^2 + x^3 + x^$	and $\beta \in \mathbb{F}_{16} = \mathbb{F}_{2^n}$ is a root doesn't give all of \mathbb{F}_{16} .	of f(x) then B=1 since	β is a root of f(x) β=1=(β-1)(β ¹ +β ² +β ² +β ² +(β+1)) = 0
2012 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		· · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

There are eight ways to factor $x^{T}-1 = g(x)h(x)$ in $F_{2}[x]$ In each case $g(x)$ is a generator poly. and $h(x)$ is a painty check poly. For a cyclic code of the over $F_{2} = E_{0,1}^{2} = F$ over $F_{2} = E_{0,1}^{2} = F$	ragth 7 x] (x-1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
BCH bound : a bouer bound for performance of a cyclic cole. Consider a cyclic code of length n over F , i.e. an ideal in $\overline{F_2[X]}$ with gen. poly. $g(x)$, parity check poly. $h(x)$, $x^n - 1 = g(x)h(x)^2$, $g(x) \xrightarrow{primitive}$, β root of $g(x)$ in $\overline{F_r}$, $r = deg g(x)$ and $\beta \beta^2, \dots, \beta^{5'}$ are roots of $g(x)$, then the code has min. distance $= s$.	· · · · · · · · · · · · · · · · · · ·
For Hamming $[7,4,3]_2$ code β root of $g(x) = 1+x+x^3 \in F[x]$, $\beta \in \mathbb{F} = \mathbb{F}[\beta]$ Also β^2 . by Freshman's Dream	· · · · ·
$\begin{array}{l} (1+\beta+\beta^{3}=0)\\ (1+\beta+\beta^{3})^{2}=1+\beta^{2}+\beta^{6}=0=1+\beta^{2}+(\beta^{2})^{3} \implies 24 \text{ has min. dist. } \geq 3, \end{array}$	· · · · ·
BCH : R.C. Bose Dijen Ray-Chandhuri Hocquenghan	

The Gilbert-Varshamov Bound (GV-bound): a lower bound for existence of good codes min. distance ≥d i.e. d(w,w') ≥d for all w≠w'in C. $A_2(n,d) = max$. |C| s.t. $C \subseteq A^n$, |A| = q with min distance $\geq d$ e= $\lfloor \frac{d-1}{2} \rfloor$ = error-correcting capability. Ball of radius r in A" centered at $0 \in A^n$ has cardinality $|B_{r}^{(j)}| = \sum_{k=0}^{\infty} {\binom{n}{k} (q-1)^k}$ $|| = ||B_0|| < ||B_1| < ||B_2|| < \cdots < ||B_n|| = ||A^n|| = ||Q^n||$ balls of radius e centered at adamonds we c are required to be disjoint Hamming bound: Ag(n, d) 5 $\frac{9}{|B_e|}$ $\bigsqcup_{\mathbf{B}_{p}(\omega)} \subseteq A^{n} \implies |\mathcal{C}| \cdot |\mathcal{B}_{p}(\omega)| \leq q^{n}$ In the other direction the CV-bound $A_q(n,d) \ge \frac{2^n}{|B_{d-1}(0)|} \quad so \quad \frac{q^n}{|B_{d-1}(0)|} \le A_q(n,d) \le \frac{q^n}{|B_e(0)|} \quad we$ Proof: Let $C \subseteq A^{\circ}$ be any q-any code with $|C| = A_q(n, d)$. We claim existence proof only $\frac{\bigvee B_{\mu}(w) \ge A^{*}}{\operatorname{But}} \xrightarrow{\operatorname{Codes}} \operatorname{satisfying}_{\text{this condition by greedy construction.}} \xrightarrow{\operatorname{We} \mathcal{C}} \operatorname{But}_{\text{such}} \operatorname{codes}_{\operatorname{sree}} \operatorname{sree}_{\operatorname{such}} \operatorname{such}_{\operatorname{such}} \operatorname{satisfying}_{\operatorname{sot}} \operatorname{satisfying}_{\operatorname{such}} \operatorname{satisf} \operatorname{satisf}$ Recommended viewing: You Tube videos on coding & info. theory (including deg. gron. codes) by Mary Woottons $S_0 | C | (B_L(0)) \ge |A^n| = 2^n$

Asymptotic version of 6V-bound due to Shannon Fix $0 < S < 1$ $ B_{S_n}(0) \approx A^n ^{\frac{h_2(S)}{2}} = q^{\frac{n_2(S)}{2}}$,	$0 \leq h_{CS} \leq 1.$
1 18 c > 1 c > 1 c > 1	· · · · · · · · · · · · · · · · · · ·
$\frac{\log_2 B_{S_n}(0) }{ t_i _{S_n}(0) } \xrightarrow{n n_2(s)} n n_2(s)$ $\frac{\log_2 B_{S_n}(0) }{ t_i _{S_n}(0) } \xrightarrow{l n_1(s)} 1 a n \to \infty.$	then y and o - (y, 1)
$\log_{2} (B_{S_{n}}(o)) \sim nh_{q}(\delta).$	· · · · · · · · · · · · · · · · · · ·
More precisely $nh_2(\delta) - o(1) \leq \log_2 B_{\delta n}(0) \leq nh_2(\delta)$	· · · · · · · · · · · · · · · · · · ·
The gary entropy function bivary entropy function $h_2(q) = -\delta \log_2 \delta - (1-\delta)$ Eq. consider a random stream of information coming from lett with letter x; having forguency $\frac{17}{4}$ ($2 \le i \le q$) δ (1-p single class form	$\log_{12}(1-3) = \partial \log_{12} \overline{s} + (1-3) \log_{12} \overline{1-s}$ Ers in A, [A]=g, A = $\{x_1, \dots, x_q\}$
with letter x_i having frequency p_i^T $(2 \le i \le q)$ & $(1-p)$ single char.form H (this stream) = $\sum p \log \frac{1}{p} = -\sum p \log p = -(1-p) \log (1-p) - (q_i) \frac{p}{q_i}$ b	$b) + f_{1} + f_{1} + \dots + f_{r} = 1.$ $bg - f_{r} = l \log (q_{r}) - p \log q - (r_{p}) \log (r_{p})$

 $h_{2}(S) = S \log_{2}(q-1) - S \log_{2} S - (1-S) \log_{2}(1-S)$ h (9=2)Singlaton bound : d ≤ n-k+1 increasing 9 4 51-4+4 $h_q(x) = x \log_q (q-1) + \frac{\log_2}{\log_q} h(x) \qquad \text{let } x \to 1^-.$ hg(x) -> logg(g-1) as x-71. R+S ≤ 1 for long codes $(n \gg 0)$ over a fixed alphabet |A|=q, we ansider the information rate $R = \frac{\log_2 |C|}{m} = \frac{k}{n}$ in the case of an [n, k] = -i deSingleton bound relative distance & 1 rolative error-correcting copubility $\frac{e}{n} - \frac{d}{2n} = \frac{S}{2}$ For 9249 we have a new lower bound for asymptotically good explicit codes using elgebraic geometry (Tsfasman, Vlahut, Zink) $R \ge 1 - h_{g}(S)$

the 1982 theorem literally says: There exists a family X: of algebraic curves over the (i=1,2,3,...) such that X: has n:+1 (rational) points over the genus g: with $\frac{g_i}{n_i} \rightarrow \frac{1}{\sqrt{2}-1}$ as $i \rightarrow \infty$. The Reed-Slomon codes come from the singlest curve of all, the projective line P'F = FV {00} (F: field) of genue O. On a curve X, $\Omega_X = \{ \text{smooth global differential 1-forms} \}$ is a vector space of dimension dim $\Omega_X = g$. The number of F_{y} points on the curve (if it's defined over F_{y}), N_{y} , satisfies $\left| N_{y} - G_{y} i \right| \leq 2g \sqrt{g}$ Hose-weil bound. Eq. P'F has N=q+1 points, g=0 Joseducible come: y=x² (b,t^{*}) te F plus one point et infinity q+(points $y^2 - x^2 = (y + x)(y - x) = 0$

Smooth curve of dagree de 3 has genue g= (3-1)=1 is topologically a torne. (elliptic curve)	•
y ² = cubic in x with no repeated roots is an elliptic curve.	•
$y^{2} = x^{3} - x = x(x+i)(x-i)$	•
g=1 (torus) $H \cdot W$ bound : over H_2 the number of points satisfies $[N - (q+1)] \le 2\sqrt{q}$ $q > 3$ $q = prime p \ge 5$	•
$N = \frac{q+1}{q+1} \text{if } q = \text{prime } p \equiv 3 \mod 4$ $q + 1 \pm 8 \qquad \text{if } q = \text{prime } p \equiv 1 \mod 4$ $ \xi \leq 2 \sqrt{q}$	•
Projective line $P'F = F \cup F \infty = X$ We consider rational functions $f(x) \in F(X)$ defined on a curve X (e.g. $X = P'F$) $A \in C \to F = X$	
Eq. F= #7 = 80,1,2,3,4,5,6} formal integer. (inear combinations of points A,B,C,D, E,F,6,00 m X are called <u>divisors</u> as a book booping device for keeping track of zeroes and poles of functions on X.	•
eg. $f(x) = (x-1)(x-2)(x-5) = x^3+3x^2-x-3 = x^3+3x^2+6x+4$ has simple zeroes at B,C,F and a triple pole at Near ∞ , $z = \frac{1}{x}$; $f(x) = f(\frac{1}{z}) = \frac{1}{z^2} + \frac{3}{z^2} + \frac{6}{z} + 4 = \frac{1+3z+6z^2+4z^3}{z^2}$ so f has a triple pole at $z = c$ The divisor of $f(x)$ is $B+C+F-3w =: Div(f)$ (sometimes abbreviated (f)). (i.e. at $x = \infty$).	8

eg

More complicated: $f(x) = \frac{(x-x)}{(x+x)}$	$(x+3)^{4}(x+5)$ 2) $(x+1)^{3}$ Div	$f(f) = 2B + 4E + C - F - 3G - 3\infty$
L = 5	A B C D E F G 0 1 2 3 4 5 6	
$f(x) = f(\frac{1}{2}) = \frac{(\frac{1}{2}-1)^{2}(\frac{1}{2}+3)(\frac{1}{2}+5)}{(\frac{1}{2}+2)(\frac{1}{2}+1)^{3}}$	$\frac{2^{2}}{2^{7}} = \frac{(1-2)^{2}(1+32)^{4}(1+52)}{(1+22)(1+22)^{3} \cdot 2^{3}}$	triple ple at 2=0 (i.e. at x=0)
The degree of D= Zm; P;	is deg D = Zm;	(m; eZ)
For any $f(x) \in F(x)$, deg	(Div f) = 0. (equally m	any ples as zeroes)
Given a divisor D = ZmiPi -		
	V	has a zero of multiplicity at least m at P.,
· · · · · · · · · · · · · · · · · · ·	f	has a pole of order at most n. at Q; ,
In the case of $P'F = F \cup 500$ $d(k \infty) = \begin{cases} f(x) \in F(x) \end{cases}$	f consider D= koo s'has a pole of order at	deg $D = k$. most k at ∞ : no other polar 3 be as many zeroes as you like) $3 = \{q_0 + q_1 \pi + q_2 \pi^2 + \dots + q_k \pi^k : q_i \in F\}.$
$\dim \mathcal{I}(k\infty) = k+1 \qquad \mathcal{I}(D)$	$) = \{f: Dirf + D > 0\}$	be as many zeroes as you like
I(-koo) = Epognomals has basis \$1, x,	x^{2} , x^{2} , x^{2}	23 = 2 = 2 = 4 = 1 = 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2
The Rieman . Roch theorem gives		g $l(D) = \dim L(D)$
l(D) - l(K-D) = deg D - g mon negative integers $l(D)$	+1 where K is a	"canonical divisor"
	$) \ge alg D - g + 1$ is 1	Riemanns bound

The genus of a smooth curve X is the dimension $g = \dim \Omega_X$ where Ω_X differential 1-forms on N.	5 the vector space of a subject
eg $X = \text{projective line } p \neq \text{over } F$, $PF = + \sqrt{2005}$ A 1-form has the form $W = \text{fir)} dx = f(\frac{1}{2})d(\frac{1}{2}) = -\frac{f(\frac{1}{2})dy}{y^2}$	$\frac{1}{x}$, $x = \frac{1}{y}$ $\frac{d(y)}{dy} = -\frac{1}{y^2}$
On PF there is no (nonsero) global 1-form. If f(x) is a poly of degree k in x then it has a pole of order k at	$d(\frac{1}{y}) = -\frac{dy}{y^2}$ so (and kzeros in F)
So $w = f(x)dx$ has a ple of order k+2 at ∞ . $\frac{1}{7^2}dx$ has no pole at ∞ but it has a double pole at the origin. $\frac{1}{7^2}dy = -dy$	
Div $\omega = \mathcal{E}(\text{zenses of } \omega) - \mathcal{E}(\text{poles of } \omega)$ the divisor of ω	
For $w = 1$ -form on P'F, deg $(w) = -2$ (2 more poles than divisors comments $\Omega_{p'f} = \{0\}$, $g = \dim \Omega_{p'f} = 0$.	ting nultiplicity).
For $w = 1$ -form on P'F, deg $(w) = -2$ (2 more poles than divisors comments $\Omega_{p'F} = \{0\}, g = \dim \Omega_{p'F} = 0.$ For an elliptic curve e.g. the curve $\{i, j = x^2 - x \ las \ \Omega_y = span \{w\}$	(w is a global smooth 1-form)
For $w = 1$ -form on P'F, deg $(w) = -2$ (2 more poles than divisors come $\Omega_{p'F} = \{0\}$, $g = \dim \Omega_{p'F} = 0$. For an elliptic curve e.g. the curve $\{i: y] = \chi^2 - \chi$ has $\Omega_{\gamma} = \operatorname{span} \{w\}$ $g = \dim \Omega_{\gamma} = i$. First, why is $\chi = \operatorname{smooth}$ cubic curve? $M_{F=0}$	(w is a global smooth 1-form) $y^{2} = \pi^{3}$ is singular at 6,0)
For $w = 1$ -form on P'F, deg $(w) = -2$ (2 more poles than divisors, come $\Omega_{p'F} = \{0\}, g = \dim \Omega_{p'F} = 0.$ For an elliptic curve e.g. the curve $\chi; y = \chi^2 - \chi$ has $\Omega_{\chi} = \operatorname{span}\{w\}$ $1 \in \mathbb{N}^{p(F)}(P)$	(w is a global smooth 1-form)

• •		x- y2=	×	3	P	oint	9 ((x, <u>.</u> 	י גע גע		ت ج	f	a lo	aub	ic a	eurve Lomo	Coo	with rols	- 4	2≠0	•	• •	-	• •	•	•••	•	•	• •		•	•••	•	
	If z= Near																		• •		(x,	· ·	2	· · ·	> (CX K	x'.	t t	z´		•	• •	•	
						9 71		1			С С	r.	J		J~•		· – / .	•	· ·	• •						ן ' אב ² אב		~		••••	•	••••	•	
	f = g $g^2 = x$	3-x	• •		••••	•	· ·	•	· ·	•	· ·	•	••••		•••	· ·	· ·	•	•••		•) ³ - [y ²						•••	•	
	$dy^2 =$	d ((x -)	r)	 	•		•	 g	2 <i>A</i> .,			 .					•	• •		•		(0,0))	iş	(y ² Q 5	5m-0	ott		Po	in l'		•	
	24 24] ₹ .(3x-	-1.)	dy.					-	ج <u>م</u>		24		• •			. 0	• •		01			, .	2	• •		~		1 5		• •	()+	5
ci	2y de =		= =	-1)) (x -4	dy.	-T2	ùs	eg	uat	A-I		· 1	2y mese	rvec	l a	nde	2 S	cala	 	NCCL	ltij	les		[×, y	3		► .	(λ ,	s, 1	λy		· ·	(<i>À</i> ≠)
w	2y dy 		3 x-	-1)) (x -1) -1) -1)			ŭs	eg	ua	A CONTRACTOR		× 1		rveo		nde	2 3	cala			ltij			/ x , y				(λ) 		λyλ		· · ·	(λ≠	9
	2y dy - dy - 3x-		3 %-					eg				× 1		rved			2 2	cela			ltij			2×, y					K / 1	λyλ			(˭	•
	2y dy 3x-							eg									2 3	cela			lij	Ces		(×, y						λy)		· · · · · · · · · · · · · · · · · · ·		

· · Yu	ann	yn's	Theo	rem	for	rw	oisy	char	mels													
She Imag	ine	a pi	pe i	د. انک م	lich	we	can	send	l: -1-;	liter	of w	ater	per	second	• • •	• •	. –			<u> </u>		
O .		l						se t		caselo		ment	-P	chilco	kitt/	gran	eli	is can in por iables	ried	along		
Now	r. for	• the	Sam	e.	pipe	ina	gene j	That.	Tt.~	ma	ms th	at a	-Can	1-5	Itors	J	wate	A DCH	Ce.	cond d	Can 1	e · ·
at	A (ate of	3	liter	pe	r 96	cond		Chis .	1.0			J	1-0	1.002			۰ ۲×			• •	• • •
tran	smitte	d by	this	Sa	nl	cham	ner/p	ipe.														
· · · · /	Amazi	ngly		fle ?	Jame	Sie	uplisti	ic rec	23000	~g	appli	o t	s sen	d id	omo	tion	rel	iably				
· · · ·		90	· · ·			a a	. .		als	0	- 		e e		0.1	1.1			ling	· · ·		
Supp	282	we t	ransn	ht i	inter	metio	n vis	ing o	strug	s of	sy.	- tools	Tre	m av	- alpl	iolie/		, 4	·· - 7	• • • • •		
H.	there	were	no n	oise	- N	re Con	na re	lably (, se	nd.	1 .0	lattar i	k		MI I	me.	• •					
	·	1	e e e An air a' A		i i Li dur	ad 4	n the	, cha	mel.	h	wing	ent	opy	rate	h	(٤)	(cl	laracters	per	unit	time)	
14	INSUR	a			- mul					1			to	544		T. IS			• •			
then	the	rate a	rt wt	ich	use	ful i	torm	ation		in 104	z reu	ang	1° au	Sailled	05	mairs		· · · ·	• •		• •	• • •
· ia · -	the this	cham		5. a	sym	obtice	Sey .	1-1	hiles	cha	racter	s pe	r um	nt t	are.							
										• •	• •			• • •	• •	• •	• •	• • •	• •			
В,) (=)	Ź	(n)	(q_1)		$\binom{n}{k}$	$=\frac{m}{L_{1/2}}$	-las		٨	!~(- Stirli	ē)√2π		an	N	7 00	• •					
.		k=0		. .	·						Stil	va'	Port care	la								
											211.0	J /	10	(···								
	• • •	• •			• •	• •					200	م ک	10			• •		• • •				
		• •	· · ·	• •	• •	• •							 	· · · ·	• •	• •	• •	· · · ·	••••			· · ·
· · ·	· · ·	· ·	· · · ·	· ·	· ·	· ·	 	· · ·	· · · ·	· ·			 	· · · ·	· · ·	· ·	· ·	· · · ·	· ·		· ·	· · · ·
· · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	 	· · ·	· · · ·	· ·	· ·	· · · ·	· ·	· · ·	· ·	· ·	· ·		· ·	· · ·	· ·	· · · ·
	· · · ·									· · ·	· · ·	· · · ·	· · ·	· · · ·	· · ·	• •	• •	· · · ·	· · ·	· · · ·	· · ·	· · · ·
· · · · · · · · · · · · · · · · · · ·	· · · ·				• •	• •	• • •	• •	••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · ·	• •		· · · · ·	· · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·
		• •		•••	• •	· ·	· · ·	· ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·		• •	· ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·
		• •		•••	• •	· ·	· · ·	· ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·		• •	· ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·

Back to Shannon's first theorem: optimal compression of information for noiseless chandle Source of information is a rendom variable $X = \begin{cases} x_1 & \text{with prob. } \\ x_2 & \text{with prob. } \\ x_2 & \text{variable} \end{cases} 0 \le p_i \le 1, \ \ge p_i = 1$
We ask for the optimal compression of info. from this source using strings over alphabet A, $ A =q$ A code for this source is a map $X \rightarrow A^*$
$C: \begin{array}{c} x_1 \longrightarrow w_1 \in A^{l_1} \\ \vdots \\ x_2 \longmapsto w_2 \in A^{l_2} \end{array} i.e. \ w_1 is \ a \ word \ in \ A^* \ st \ kength \ l_1$
The expected kingth of C(X) is $\stackrel{*}{\succeq}$ p: l;
Theorem $\sum p_i l_i > H(X) := \sum p_i \log_2 p_i = -\sum p_i \log_2 p_i$. Moreover, we can asymptotically achieve
compression having Z pl; as close as desired to H(X). C must be an injective map (the code is uniquely decodable). We will discuss the proof under the
Connect be an injective map (the code is uniquely decodable). We will discuss the proof under the strongen assumption that C is prefix free: none of the codewords w.,, why is a prefix (initial substring) of any of the other codewords.
(emmine (Kratt's megnelity) 27:51.
Proof Elements in [0,1] (real interval) can be written in base q as infinite strings over A as
$0, q, q_2, q_3, q_4, \cdots, q_j \in A$
Each $w_i \in C(X)$ determines a subinterval of $[0,1]$ given by ell real numbers whose first l_i "digits" agree with w_i i.e. $r \in [0,1]$ s.t. $r \uparrow l_i = w_i$. These real numbers form a subinterval of width $\frac{1}{2}\theta_i$.
These subintervals are disjoint.

[0,1] 0.1 0.0+ 0.0+ 0.0+ 0.0+0.02+ 1.