
Information Theory

Book I

Digital Photograph	• Kelm • Qua	mon in sical ind ogoror i atum ind	fornat ormat formati	ion lossy compiles	(alg	sticel	neas	in for	nent		a form	natie	n G	nte		•			· · ·			•		· · · ·				
10 MB bit		- 35 0 K	B je		• •	· · ·	· ·	•	• •	• •	•••	•••	••••	•	· ·	•	• •	•	• •	· ·	•	•	· ·	•		· ·	•	•
Text documents	loss loss compress	~ 2.3 K	B	· · ·	-7	2,4 K)	B	•	· ·	• •	• •	· ·	•••	•	· ·	•	• •	•	• •	· ·	•	•	· ·	•	•	• •	•	•
	e perfect	corpy of			• •	· · ·	••••		• •	• •	••••	••••	•••	•	· ·	•	• •	0	• •		•	•	• •	•	• •	• •	•	0
	the original the entra	gind con ded/rec	overal.		• •	· · ·	•••		· ·	· ·	· ·	•••	• •	•	· ·	•	• •	•	• •		•	•	· ·	•		· ·	•	•
Consider	the ortigination the extra	cled/rec	ion :	stream	· · · ·	mpose frag.	L e	æ ø	E, 2.50,	T, 0.15,		8 0 8 1 8 1 8 1 8 1	R,	1 1 1	· · · ·	•	1	02	• •		•	•	· · ·	•	•	· · ·	•	•
· · · · · · ·	the ortigination the extra	cled/rec	ion :	stream	· · · · · · · · · · · · · · · · · · ·	mpose. fæq.	l e	P o	E,).so,	τ, 0.15,		8 1 1 1 1 1 1 1 1 1 1	R , .	1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1	02	· · ·		· · ·	•		- - - - - - - - - - - - - - - - - - -				•
Consider	the ortigination the extra	cled/rec	ion :	stream	Co	frag.	1	æ ø	E, 2.50,	τ, 0.'5,		81	R	1, 1, 1,			1	02										• • • •
Consider	the ortigination the extra	cled/rec	ion :	stream			3 1	P 0	E ; 2.50 ;	0.15,		8 , 1 8 , 1 1 , 1 11 , 1 11 , 1 111111111	R				2	02										

0.50 0.50 9.50 0.50 0.50 0.50 E) 0.22 0.28 1,00 0.15 0.15 0.15 0.15 0.50 0.15 0.13 0.12 0.12 0.12 0,27 0.28 0.12 0.13 0.10 0,10 0:10 (s) 0,22 0.08 0,10 0.05 0.04 0.13 R 0.05 0.04 0.04 0.08 tuffman code 0.04. Plain 0.03 0.05 0.02 000 001 011 010 001 000 C 01 100 01011 0 01010 0 0100 1 01000 Huttman A string of a characters is represented (plain text) which the Huffman code bits 37 Encode 01011 0000 2.26 m Compresses (plain text Decoding bits. 75.3% jiginal

Example 1 Huffman code with blocksize 1 character gives n bits -> 226 n bits 3 0.753 n bits
Ectropy: Splagpi ~ 1.55678 bits per character
p:= 0.5, 0.15,, 0.12 (i=1,2,,8) Compare : plain text encoding of characters requires 3 bits.
Bivany entropy function: A biased coin has heads with prob. p 0 <p< p=""> Bivany entropy function: A biased coin has heads with prob. p 0<p< p=""> H (coin) = p log + + (1-p) log + + (1-p) log + 1-p = no. of bits (on average) to express the outern of each coin flip.</p<></p<>
H (coin) = plog_p + (1-p) log_ 1-p = no. of bits (on average) to express the outern H (coin) = plog_p + (1-p) log_ 1-p = no. of bits (on average) to express the outern of each coin flip.
Recall: If X is a random variable with outcomes X=x (15i5n) with prob. p. (2p.=1)
then the kinesy entropy of a since Elimpi
= no. of bits on average required to express observed values of X.
Quary entropy function in base q the quary entropy function $H_q(X) = \sum_{i=1}^{n} \frac{1}{\log_q} (\frac{1}{p_i}) = \frac{1}{\log_q} H_z(X)$
Starting Friday, more to CR144

Eq. A logie is 8 bits 2" = 256 If X can be encoded using N bits then it takes N bytes. If I buy a dack of cards, its entropy is 0 in the sense that no information is required to express the order of the deck. After suitifling the deck, it takes 225.58 bits to express the order 2nd has of Thermodynamics 2nd has of Thermodynamics 2nd has of Thermodynamics 2nd has 7.8 inmite video linked on course website (about 68 decimals). 2nd Law of Termodynamics Watch the 7.8 minute video linked on course website p. 19 Shamon's Source Coding Theorem (for channel without noise) A channel is used to send a stream of symbols e.g. O's and I's reliebly at a certain muber of bits per second Information coming from a source X has finitely many outcomes with entropy $H(X) = H_{c}(X)$ bits per symbol eg. X.,..., X. or A,B,C,D,... This information can be reliably send and received at a maximum rate $\frac{C}{H}$ bits/symbols/sec. Eq. X is a stream of characters E,T...,D (first example) with prob. 0.50, 0.15..., 0.02, H(X) = 1.55 bits/cher. If I transmit into. from this source using a channel with capacity 21 bits/sec. then I can satisfy transmit loss that (31 bits/sec = 20 char./sec. We can get within any pos 2 of this optimal rate i.e. 20-2.

Suppose X Y are independent random variables each with finitely many possible values X has value x; with prob. $p_i \in (0,1)$ ($1 \le i \le m$) Y has value yo with prob. gi & (0,1), Eqi=1 $H(x) = \sum_{i=1}^{\infty} P_i \log \frac{1}{p_i}$ $H(Y) = \sum_{i=1}^{n} q_i \log \frac{1}{2}$ The pair (X, Y) has value (x;, y) with prob. P:2j $H(X,Y) = \sum_{ij} p_i q_j \log(p_i q_j) = \sum_{ij} p_i q_j (\log p_i + \log \frac{1}{2})$ = $\sum_{i,j} p_i q_j \log \frac{1}{p_i} + \sum_{i,j} p_i q_j \log \frac{1}{q_j}$ $= (\underset{j}{\Xi} p; bg \neq) \underset{j}{\Xi} q_{j} + (\underset{j}{\Xi} p;) \underset{j}{\Xi} q_{j} bg \neq j = H(x) + H(Y).$ If X,Y are dependent $H(X,Y) \leq H(X) + H(Y)$

· · · · · · / · · · 0 0 = * \$ Maxwell's Demon Computation requires some minimal expenditure of energy when itializing memory registers, and when reading memory registers, resulting in the creation of entropy Information is any thing representable (usually without loss of information) as springs of tetters over a given alphabent of q letters. Springs of tetters are words. When q=2 we have 2 letters (usually 0, 1) called bits. A code is a scheme for translating words to words. Sadi Carnot We are not doing cryptography. In the theory of error-correcting codes ("coding theory") information is encoded before transmission so that the information can be protected from noise in the channel.

			• • •		• •		• •		en	(60	le			se	sat		• •	• •		5	•	• •	n 1	ele	ive	
Msg. No.	Message Text	Scheme 1 ("As Is") Codeword		P	lain	1	ēxt		•		•	7	4	de	lwe	ord						>	•	<i>w</i>	Dr.	
0	0000	0000		• •		01) [•		•	10	11	•	• •	h	Ó	Śŋ		7		10	DI	
1	0001	0001				0 0				• •					0 0			cl	a	Je	-).	• •			0	
2	0010	0010		• •	• •	• •	• •			• •	•				• •		• •		•			• •	•	• •	•	
3	0011	0011		• •	• •	• •	• •		•		•				• •	•	• •		•	• •	•		•	• •		
4	0100	0100																								
5	0101	0101		• •	• •	• •	• •			• •	•				• •		• •	• •	0	• •	•	• •	•	• •		
6	0110	0110		• •	• •	• •					•				• •	•	• •				•		•	• •		
7	0111	0111			• •	• •				• •	٠				• •			• •				• •				
8	1000	1000		• •	• •	• •				• •	•	• •		• •			• •		•	• •		• •	•	• •	•	
9	1001	1001		• •	• •	• •					•				• •	•	• •		0		•		•	• •	0	
10	1010	1010		• •	• •	• •								• •	• •		• •	• •		• •		• •		• •		
(11)	(1011)	1011		• •	• •	• •				• •	•	• •		• •	• •		• •					• •			•	
12	1100	1100		• •	• •	• •					•				• •		• •		•		•		•	• •	•	
13	1101	1100		• •	• •	• •								• •	• •		• •	• •		• •		• •		• •		
				• •	• •	• •				• •	•	• •					• •		•		•	• •	•	• •	•	
14	1110	1110		• •	• •	• •	• •	• •			•	• •			• •	•	• •	• •	•	• •	•		•	• •		
15	1111	1111								• •		• •														

Msg. No.	Message Text	Scheme 1 ("As Is") Codeword	Scheme 2 (Parity Check) Codeword
0	0000	0000	00000
1	0001	0001	00011
2	0010	0010	00101
3	0011	0011	00110
4	0100	0100	01001
5	0101	0101	01010
6	0110	0110	01100
7	0111	0111	01111
8	1000	1000	10001
9	1001	1001	10010
10	1010	1010	10100
11	1011	1011	10111
12	1100	1100	11000
13	1101	1101	11011
14	1110	1110	11101
15	1111	1111	11110

•	•		d o			9 2	•	' P	ar	i. i.h.	1 '	ehe	20	6	> [6)		ĩŚ		2-		ex	a	~¶	s la	•	of oit	•	٩	
1	-6	eri	01	~	d	le	ec	tù	7). Coc	le	•	•	P	f		de	te	ct	5	a		52	g	ه	1	o it		Æ	24
w	id	h	m	t		e	ng	4	al	le	•	-6	2	G	-	eđ	<u>L'</u>	it	5.						•	•		•			ļ
•	•	•	•	•	•	•	Ĩ	•	•	•	•		•	•	•		•		•		•	•		•	•	•	•	•	•	•	•
																												•			
																												•			
																												•			
																												•			
																												•			
																												•			
																												•			

Msg. No.	Message Text	Scheme 1 ("As Is") Codeword	Scheme 2 (Parity Check) Codeword	Scheme 3 (3-Repetition) Codeword
0	0000	0000	00000	00000000000
1	0001	0001	00011	00000000111
2	0010	0010	00101	000000111000
3	0011	0011	00110	000000111111
4	0100	0100	01001	000111000000
5	0101	0101	01010	000111000111
6	0110	0110	01100	000111111000
7	0111	0111	01111	000111111111
8	1000	1000	10001	111000000000
9	1001	1001	10010	111000000111
10	1010	1010	10100	111000111000
11	1011	1011	10111	111000111111
12	1100	1100	11000	111111000000
13	1101	1101	11011	111111000111
14	1110	1110	11101	111111111000
15	1111	1111	11110	111111111111

plain text enade This 3-repetition code is a 1-error correcting ade. If at wost one bit flip occurs during transmission, we can sately This code has a 3%% information rate ({ of the bits transmitted carry actual information; the other = of the bits sent are used to provide redundancy for the purpose of error correction) If one wants to send 4 bit messages and have one error correcting ability one can achieve much higher than 33 % information rote. You can achieve 57% information rate.

Table A: Four Schemes for Encoding of 4-bit Message Words

Msg. No.	Message Text	Scheme 1 ("As Is") Codeword	Scheme 2 (Parity Check) Codeword	Scheme 3 (3-Repetition) Codeword	Scheme 4 (Hamming) Codeword
0	0000	0000	00000	00000000000	0000000
1	0001	0001	00011	00000000111	0001111
2	0010	0010	00101	000000111000	0010110
3	0011	0011	00110	000000111111	0011001
4	0100	0100	01001	000111000000	0100101
5	0101	0101	01010	000111000111	0101010
6	0110	0110	01100	000111111000	0110011
7	0111	0111	01111	000111111111	0111100
8	1000	1000	10001	11100000000	1000011
9	1001	1001	10010	111000000111	1001100
10	1010	1010	10100	111000111000	1010101
11	1011	1011	10111	111000111111	1011010
12	1100	1100	11000	111111000000	1100110
13	1101	1101	11011	111111000111	1101001
14	1110	1110	11101	111111111000	1110000
15	1111	1111	11110	111111111111	1111111

symbols a sword is a spring of n letters over A. There are q work A code is a subset $C \subseteq A^{"}$ The (Hamming) distance between two words w, w' e C denoted d(w, w'), is the number of positions in which they differ, eg. d(1011, 1110) = 2 The Hamming code listed here satisfies d(w,w') >3 for all w = w' in the code. 3 is the minimum distance of the code. d is a metric : d(w, w') >0 for any two words w, w' Equality of w=w'. $d(\omega',\omega) = d(\omega,\omega')$ d(w, w') + d(w', w") > d(v, w") (triangle If a code CCA" has min. distance d then it is e-error correcting where $e = \lfloor \frac{d-1}{2} \rfloor$. In particular in order to correct e errors, we want $d \ge 2e+1$.

If we send a word w and due to errors this is received as w' where $d(w,w') \leq e$, then w is the unique codeword at distance $\leq e$ from w' (assuming C has min. distance $d \geq 2e+i$). If w, w' = C were both at distance se tran w' then d(w, w') s e+e=2e Big question: what is the maximum number A(n,d) of colewords in a code C S A" having a eg A₂(7,3) = 16. The existence of the Hamming code gives A₂(7,3)≥16. Hamming bound (an upper bound) e= [2] Minered Constitut Shere-picking $A_q(n,d) \leq \frac{2}{\sum_{k=0}^{\infty} {\binom{n}{k}} {\binom{q-1}{k}}^k}$ FILION eg. $A_2(7,3) \leq \frac{2'}{e^2}$ $e = \left\lfloor \frac{3-1}{2} \right\rfloor = 1 \right\rfloor_{k=0}^{k=0} {\binom{9}{k}}$ Codes achieving equality in the Hamming bound) are perfect codes. The binary Hamming codes gives an infinite family of perfect codes

l = binary tammi- è = extendendo Eucliden distance be Equivalently : shortest	$v \in \mathbb{Z}$ $g cole = \xi coccocco, col f cole = \xi coccocco, col f coccocco, coccocco, col f coccocco, cocco, coccocco, cocco f coccocco, coccocco, coccocco, cocco f coccocco, coccoccocco, coccocco, coccocco, coccocco, coccocco, coccoccocco, coccocco, coccocco, coccoccoccocco, coccocco, coccoccocco, coccoccocco, coccoccoccoccocco, coccoccoccoccocco, coccoccoccoccocco, coccoccoccoccocco, coccoccoccoccoccoccoccoccoccoccoccoccoc$	baleword in E } bill,, IIIIIII, bollilo,, IIIIIIII word of weight words words word	e = 16 $(\hat{e} = 16$ 7 8 8 $ng^{-th} 2$	eight et w = d(w, o)
$(0,0,\pm 2,0,0,0,0,0)$ that bells in \mathbb{R}^{*} cen	16.19 = 224 lattice 2.8 = 16 240 roof vector terel at lattice vector	15 in Es. ars in Es lattice	achieve the densest	possible packing in R.
· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·

Scheme 4	The generator matrix of this Hamming code is
(Hamming) / Codeword	
0000000	$G = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$
0001111	The encoding x - x & gives the Hamming codewood for each plaintext word x
0010110	The encoding $x \mapsto x \in$ gives the thanking colonized for each plaintext word x eq. the plaintext for 11 is $x = 1011 \in F^4$, $F = \overline{10}, 1\overline{3} = \overline{12}/27L = \overline{15}$ (arithmetic mode)
0011001	
0100101	(6= [10]]][0][0][10]] = [10][0][0] (0)[10]] = [10][0][0] (unplemented very efficiently (unplemented very efficiently
0101010	The chore motion for the Hanning code is in real time, much faster
0110011	$H = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$.
0111100	If a word we F' is received, we decode by first computing the error syndrome
1000 <mark>011</mark>	It a word wet is reaction, we thank of the indice the man
1001100	$\frac{Hw^{T}}{3x7} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ The Hamming code is the row space of G and it's the null space of H.
1010101	null space of H.
1011010	If we receive an erroneous () when F (a vector space)
<mark>1100</mark> 110	If we receive an erroneers $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
1101 <mark>001</mark>	$H(w') = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
1110 <mark>000</mark>	LIOIDIDI = [1] Little riginal message sent
1111 <mark>111</mark>	[0]].

Scheme 4 (Hamming) Codeword 0000000	Abcdefg 1 (0010110 2 (001001 3 (0100101 4 (010100 5 (1000011 1 001100 5 (1000011 1 001100 5 (1000011 1 001000 1 000011 1 0000011 1 0000011 1 0000011 1 000001 1 000001 1 000000 1 000000 1 000000 1 000000 1 000000 1 000000 1 000000 1 000000 1 000000 1 00000 1 000000 1 00000 1 00000 1 00000 1 000000 1 00000 1 0000000 1 000000 1 000000 1 000000 1 000000 1 000000 1 000000 1 000000 1 0000000 1 00000000 1 00000000 1 0000000 1 00000000 1 00000000 1 00000000 1 00000000 1 00000000 1 00000000 1 000000000 1 00000000 1 00000000 1 00000000 1 00000000 1 00000000 1 00000000 1 00000000 1 00000000 1 00000000 1 000000000 1 00000000 1 000000000 1 0000000000
0001111	
-0010110	, a a a a 🕈 La a a a 🥕 a a a a a a a a a a a a a a a
-0011001	fixing $k \ge 1$, let H be the kxn motrix $(n = 2^{k} - i)$ whose columns are all binary integers in $\{1, 2,, n\}$ (written in binary). This gives a parity check matrix for a perfect remor correcting code.
0100101	integers in \$1,2,, n} (written in binary). This gives a party check matrix for
0101010	a perfect remor correcting code.
0110011	eg k=2 gives H= 0 gives the code jour (11)
0111100	A linear query code of length n is a subspace $C \leq F_1^m$ where F_2 is the field of order $q = p^e$, p prime, $e \geq 1$. (for each prime power $q = p^e$ there is a unique field F_2 of order q . When $e = 1$, $q = p$, $F_1 = 50, 1, 2,, p - 3$ with arithmetic mod p . For $e \geq 2$, F_3 is not When $e = 1$, $q = p$, $F_2 = 50, 1, 2,, p - 3$ with arithmetic mod p . For $e \geq 2$, F_3 is not when $e \geq 1$, $q = p$, $F_2 = 50, 1, 2,, p - 3$ with arithmetic mod p . For $e \geq 2$, F_3 is not
-1000011-	q=p, p prime, e>1. (for each prime ponce q=p there is a unique field the of order q.
1001100	When e=1, q=p, Tp=20,1,2, p-1) with arithmetic mod 4 we have 2.2=4=0. Nevertheless integers mod q.) Z/qz = {0,1,2,3} with arithmetic mod 4 we have 2.2=4=0. Nevertheless
1010101	tion a good Grand important codes that are to - linear which are not the
1011010	field.) An $[n,k,d]_2$ -code or $[n,k,d]$ or $[n,k]$ code, is a grang linear code, is a subspace $C \leq T_2^m$ of dimension k (so $ C = q^h = p^{k_c}$) and minimum weight $\neq d$.
1100110	subspace $C \leq TF''$ of dimension k (so $ C = q^{h} = p^{ne}$) and minimum weight $\neq d$.
1101001	is a one to we with with the is the minutes of noneero
1110000	coordinates, i.e. dlw, 0). The minimum distance of C is mini a weight of C in the case of
1111111	Note: the weight of $W \in H_2^{\alpha}$ coordinates, i.e. $d(w, o)$. The minimum distance of C is min $Ed(w, w')$: $w \neq w'$ in C ? $w \neq w'$ in C d(w, w') = d(w - w, w - w) = d(0, w' - w) a linear code.

We have backed closely at the perfect binary Hamming code of length 7 (a [7,4,3] code and the extended binary Hamming code of length 8 (i.e. [8,4,4] code) 2) 2 /
and the extended binary Hamming code of length & (i.e. [8,4,4] - code) 26	
I have 1 word of weight 0 If have 1 word of weight 0 7 words	
7 words	
en en en en en en fan en	
$2^{\dagger} = 16$	
Related constructions: proj. plane of order 2	
Es voet lattice	
estended broavy Hamming cole & (18,9,4), - code)	
octonions RCCCHCO real division algebras	
Other perfect codes: the Golay codes The Golay codes Color code of longth 22 is [23.12.7]	
Binary Colay code perfect binary Golay code of length 23 is [23, 12, 7]2	
Binary Colay cale perfect binary Golay code of length 23 is [23, 12, 7]2 all a extendede " 24 is [24, 12, 8]2	
which are related to the leech lattice which gives the optimal packing of uniform spheres in \mathbb{R}^{27} ; also the Steiner system in this case is the $S(5,8,24) - W$ it design. The design is a collection of 759 subsets of $\tilde{I}_{1,2}, \dots, 24$; each of size 8, such that every $\tilde{I}_{1,2}, \dots, 24$; is contained in a unique octad. If we cannot ordered pairs (T, B) with The of the design, in two different ways, $\binom{8}{5}$.759 = $\binom{21}{5}$.	
spheres in R24, also the Striver system in this are is the S(5,8,24) - With design	= 1.40
The design is a collection of 759 subsets of \$1,2,-,243, each of size 8, such that every	3-subset of
\$1,2, 243 is contained in a ungue build. If we cam ordered pairs (1, 5) with TE	5, D and deleg
of the design, 10 two outcoment mays, 15/137 = (5)-1.	
A	
A unique octal & containing 759= (5) pack 5-set T.	
A unique octal B containing $759 = \frac{15}{15}$ each 5-set T.	

The extended binary Colay code is	5 [24, 12, 8], with	1 colemond of neight 759	6 0		
••••••••••••••••••••••••••••••••••••••		2576	8	the octable (the dodecades) (comptained ats of	
		759	16	(unoterna of al	state)
			20	Co publicati or	
_.		4096.			
The extended ternany Goby code is is the extended version of the	[12,6,6],				
is the extended sporting of the	[165] ade which	h is perfect			
	(10,0 J3 and				
$A_3(11,5) \leq \frac{3}{3^5} = 3^6$					
	10/12-12 = 141	$ \rangle_{2} = (\rangle_{2}^{2} = 242$	- 25 -		
(hall of radius 2) = E		$(1)^{2} + (2)^{2} = 213$			
				· · · · · · · · · ·	· · · ·
Singleten bound Consider	an [n, k, d], - code	z i.e. linear code C:	≤ Ę" ,	IF = field of a	order g
Singleton bound Consider	an [n,k,d]z-code	2 i.e. linear code C: min weight.	≤ Ę″,	$H_{g} = field of c$	order q
dim C=k	length dimension	min weight. = min. distance			order q
$\dim C = k$ then $k \leq n - d + 1$	length dimension	min weight. = min. distance			order q
$\dim C = k$ then $k \leq n - d + 1$	length dimension of C has generat	min weight. = min. distance or water & which	s k×.	· · · · · · · · · · · · · · · · · · ·	order g
$dim C = k$ $then k \leq n-d+1$ $k+d \leq n+1$ $d \leq n-k+1$	length dimension of C has generat C = S × G	min weight. = min distance br matrix G which : $\pi \in I_2^k = 1000$	is kx , space of	е. с	vider q
$dim C = k$ $then k \leq n-d+1$ $k+d \leq n+1$ $d \leq n-k+1$	langth dimension of C has generat C = 5 x 6 C has parity	min weight. = min distance = matrix G which : $\pi \in \mathbb{F}_2^k = row$ check matrix H vol	is kx o space of	2 G (nk)×n	nder g
dim $C = k$ then $k \leq n-d+1$ $k+d \leq n+1$ $d \leq n-k+1$. Since H is $(n-k) \times n$, it has rank a-k so any $n-k+1$ columns are lin dep.	langth dimension of C has generat C = 8 x6 C has parity C = mult	min weight. = min. distance $\Rightarrow r$ matrix G which $\therefore r \in I_2^k = rows$ check anotrix H vot $space \Rightarrow H = 5 x e$	is kx o space of hich is F": +	$P \in G$ (mk) × m ($x^T = D = \frac{3}{2}$	
dim $C = k$ then $k \leq n-d+1$ $k+d \leq n+1$ $d \leq n-k+1$. Since H is $(n-k) \times n$, it has rank a-k so any $n-k+1$ columns are lin dep.	langth dimension of C has generat C = 8 x6 C has parity C = mult	min weight. = min. distance $\Rightarrow r$ matrix G which $\therefore r \in I_2^k = rows$ check anotrix H vot $space \Rightarrow H = 5 x e$	is kx o space of hich is F": +	$P \in G$ (mk) × m ($x^T = D = \frac{3}{2}$	
dim $C = k$ then $k \leq n-d+1$ $k+d \leq n+1$ $d \leq n-k+1$. Since H is $(n-k) \times n$, it has rank a-k so any $n-k+1$ columns are lin dep.	langth dimension of C has generat C = 8 x6 C has parity C = mult	min weight. = min. distance $\Rightarrow r$ matrix G which $\therefore r \in I_2^k = rows$ check anotrix H vot $space \Rightarrow H = 5 x e$	is kx o space of hich is F": +	$P \in G$ (mk) × m ($x^T = D = \frac{3}{2}$	
dim $C = k$ then $k \leq n-d+1$ $k+d \leq n+1$ $d \leq n-k+1$. Since H is $(n-k) \times n$, it has rank a-k so any $n-k+1$ columns are lin dep.	langth dimension of C has generat C = 8 x6 C has parity C = mult	min weight. = min distance = matrix G which : $\pi \in \mathbb{F}_2^k = row$ check matrix H vol	is kx o space of hich is F": +	$P \in G$ (mk) × m ($x^T = D = \frac{3}{2}$	

ales satisfying the singular bound	l i.e. having d= n-k+1 are optimal in a certain sense.	
They are called MDS concs.		
Eg. the Hamming [8,9,4] - code	has $d < n-k+1 = 8-4+1=5$	
[7,4,3]2 has d=3 < 7-4+1.		
Note: C is MDS iff everythe columns iff every & columns iff every & columns	of G are lin. independent (any (n-k) x(n-k) submatrix of H is of G are lin. indept	
and a second second second the Constant of the second second second second second second second second second s		
In fact the Singleton bound applies $A_q(n, d) \leq q^{n-d+1}$	to all codes, not just linear codes:	
$A_{a}(n,d) \leq q^{n-d+1} \qquad \qquad$	For a linear code, $ \mathcal{C} = q^k \leq q^{n-d+1}$	
max as of redemonds in a Proof : Le		
mar no of codewords in a Proof : Le gary code of		25.
mar a of codewords in a Proof : Le gary call of length h with		265
mar no of codewords in a Proof : Le gary call of length in with min distance >d		85.
mar. no. of codewords in a Proof : Le gary code of length in with min. distance >d	$\mathcal{L} \subseteq \mathcal{L}$	PA
mar. ac. of codewords in a Proof : Le gary code of length in with min. distance >d Eg. the Red. Slower codes are MDS.		R
mar. no. of codewords in a Proof : Le gary code of length in with min distance >d Eg. the Reed Showen codes are MDS.		
mar. no. of codewords in a Proof : Le gary code of length in with min. distance >d		65.
mar. no. of codewords in a Proof : Le gary code of length in with min distance >d Eg. the Reed Showen codes are MDS.		
mar. no. of codewords in a Proof : Le gary code of length in with min distance >d Eg. the Reed Showen codes are MDS.		
mar. no. of codewords in a Proof : Le gary code of length in with min distance >d Eg. the Reed Showen codes are MDS.		
mar. no. of codewords in a Proof : Le gary code of length in with min distance >d Eg. the Reed Showen codes are MDS.		

$E_{g}, G = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 4 & 4 \end{pmatrix}, H = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 4 & 4 \end{pmatrix}$ $E_{g} = \{0, 1, 2, 3, 4\}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
This Reed Solonon code encodes x= (a, b, c) +> x6 = (a b c) [0 1 2 3 4] = [a, a+b+c, a+2b+4c, a+3b+4c, a+4b+c]
Eucoding is the evaluation map $F \longrightarrow [f(0), f(1), f(2), f(4)]$ Read Solamon adjusted $f(x) = a + bx + cx^{2}$
The code has an in distance 3 because two distinct polys of legree ≤ 2 agree in at most two points. Ceneralize: Start with a finite field $I_2^{-} = \{2, q_2, \dots, q_3^{-}\}$ $g = p^{e}$, p prime, $e \geq 1$
Fix an irreducible poly. $g(x) \in F_{p}[x]$ of degree e.
= { c+ c+ + + + c+ + + + + c+ + + + + c+ + + + + + + + + + + + + + + + + + + +
An [q, k, d] - Reed Solomon code encodes polynomials $f(x) \in \mathbb{F}_{2}[x]$ of degree < k as codewords $d = q \cdot k_{+1}$ ($f(q_{1}), f(q_{2}),, f(q_{2})$) $\in \mathbb{F}^{k}$ of length q with min distance $d = q \cdot k_{+1}$ How do we correct errors? How do we even test words $\in \mathbb{F}^{n}_{+}$ to see if they are codewords? What is a parity check matrix H for this code?

• •	 .	is -	the	so	me	H) inne C	3-	as	a	- 9	zeu	ero	tor	m	atri	ix	f	нг (1 1	the	[9-1	k, o	1-	k+1 '		Re	ed	Sb	non	i d	<	2-	(9	k)+			•
<u></u>	eole	en	l	et	F	1,61	F.	•	The	h		ر عد آ	a	k :=	-	ς σ [) 	if if	•	k∈' k =	50, 9-	L 2: .	2	-23		• •		•		oole		•		•	• •	-	· ·	•	•
		-6						(k= ~k=	。) ()		1+ 0+	+ +	1+	1+	(= 4		5= 10=	00		14	4	5	•	· · ·		••••	•	•	· ·	•	· · ·	•	•••	•	· ·	•	• •	•	•
• •		0			•		0	. نا	2		0-	+ (· + (+4 +3	+4 +2	+1 +1	, <u>1</u>	10 10°	= 0 =0		•	• •			• •		• •			• •		• •				• •	0	• •	•	•
• •	• •	•	• •		0	• •	((k =	4)		D	+ 1	¥	+ /	(+ 1	-	4	= -1		0	••••	•		• •		• •	•	•	• •		• •	•	• •	•	· ·	•	• •	0	•
• •	· ·	•	• •	• •	•	• •	•	•	• •		•	•	• •	•	•	· ·	•	•		•	••••	•	•	••••	• •	• •	•	•	· ·	•	· ·	•	· ·	•	· ·	•	• •	•	•
• •	•••	•	• •		•	• •	•	•			•	•	••••	•	•	•••	•	•		•		•	•	••••			•	•	•••	•	•••	•		•		•		•	•
• •	• •	•			0	• •	•	•			•		• •	•	•	• •	•			0		•	•	• •				•	• •	•	• •	•			• •	•	•••	0	•
• •	· ·	0	• •		•	• •	•	•	• •		•	•	••••	•	•	• •	•	•		•	• •	•	•	••••		• •	•	•	· ·	•	••••	•	• •	•			• •	•	•
••••	• •	•	• •		•	• •	•	•	• •		•	•	• •	•	•	••••	•	•		•	· ·	•	•	• •			•	•	••••	•	••••	•	• •	•	· ·	•	• •	•	•
• •	• •		• •		0	• •	•	•			•	•	• •	•	•	• •	•	•		0		•	•	• •			•	•	• •	•	• •	•		•		•	• •		•
• •	• •	0	· ·		•	• •	•	•	• •		•	•	• •	•	•	• •	•	•		•	•••	•	•	• •		• •	•	•	· ·	•	· ·	•	• •	•	· ·	•	• •	•	•
• •	• •	•	• •		•	• •	•	•	• •		•	•	• •	•	•	• •	•	•		•	• •	•	•	• •			•	•	• •		· ·	•	• •	•	• •	•	• •	•	•