
Information Theory

Book I

Digital Photograph	• Kelm • Qua	mon in sical ind ogoror i atum ind	fornat ornat formati	tion (alge	sticel 1) rihmi 80 KB	c in	Grui			imati		inte					· · · · · · · · · · · · · · · · · · ·		•	•	· · · · · · · · · · · · · · · · · · ·	•			· · · · · · · · · · · · · · · · · · ·
lo mb bit			B je		· ·	• • •	• •	• •	• •	• •		· ·	• •	••••	•	•		••••	•	•	•	· ·	•	••••	•	· ·
Text document SOKB	loss loss compress	~ 2.3 K	B -	• •	-7	2,4 K		· ·	· ·	· ·	· ·	· ·	· ·	• •	•	• •	•	• •	•	•	•	· ·	•	••••	•	· ·
	a perfect	corpy of		• •	• •	· · ·	• •	• •	• •	• •	• •	• •	• •	• •	•	•	•	• •	•	•	•	· ·	•	••••	•	••••
	the original the entra	iginal con	overed.		•••	· · ·	· ·	• •	• •	· ·	• •	••••	• •	•••	•	• •	•	••••	•	•	•	· ·	•	••••	•	· ·
Consider	the orthe extra	cled/rec	ion :	iteam	· · · · · · · · · · · · · · · · · · ·	mposed	Lø	P E o.s		τ, γ 2.15,			· · ·	0	/]) 02	· · ·	•	•	•	· · ·	-	· · ·	•	· ·
· · · · · · ·	the orthe extra	cled/rec	ion :	iteam	· · · · · · · · · · · · · · · · · · ·	mposed fæq.	Lø	ρ e.s	- - - - - - - - - - - - - - - - - - -	τ _ι τ	8 , 8 , 8	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·		<u>]</u> 0	02	· · ·	-	-	· · ·	· · · · · · · · · · · · · · · · · · ·	•		-	· · · · · · · · · · · · · · · · · · ·
Consider	the orthe extra	cled/rec	ion :	iteam	· · · · · · · · · · · · · · · · · · ·	mpares fræg.		ρ Ε 0.s		τ. τ. τ. τ. τ. τ. τ. τ. τ. τ.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			1	02				· · · · · · · · · · · · · · · · · · ·		-		-	
Consider	the orthe extra	cled/rec	ion :	iteam		mposed		ρ Ε ο.s			8 8 8 1 1 1 1 1 1 1 1 1 1		· · · · · · · · · · · · · · · · · · ·]	02									

0.50 0.50 9.50 0.50 0.50 0.50 E) 0.22 0.28 1,00 0.15 0.15 0.15 0.15 0.50 0.15 0.13 0.12 0.12 0.12 0,27 0.28 0.12 0.13 0.10 0,10 0:10 (s) 0,22 0.08 0,10 0.05 0.04 0.13 R 0.05 0.04 0.04 0.08 tuffman code 0.04. Plain 0.03 0.05 0.02 000 001 011 010 001 000 C 01 100 01011 0 01010 0 0100 1 01000 Huttman A string of a characters is represented (plain text) which the Huffman code bits 37 Encode 01011 0000 2.26 m Compresses (plain text Decoding bits. 75.3% jiginal

H(p) Recall: IF X is a random variable with butcomes X=x: (1≤i≤n) with prob. p. (≥p.=!) then the bineary entropy of X is H(X)= Ž p. bg. p. = no. of bits on average required to express observed values of X.
Binang entropy function: A biased coin has heads with prob. p with independent togses H(coin) = plog + + (1-p) log - 1-p = no. of bits (on average) to express the outcomes 1 H(p) 1 H(p) Recall: IF X is a random variable with outcomes X = x: (1 \le i \le n) with prob. p. ($\le p$:=1) then the binary entropy of X is H(X) = $\ge p$: by p .
H(p) (X=x: (1≤i≤n) with prob. p. (≥p:=!) then the binary extropy of X is H(X)= Ž p. bg. p. = no. of bits on average required to express observed values of X.
H(p) Recall: IF X is a random variable with automos X= x: (1≤i≤n) with prob. p. (≥p:=!) then the binary entropy of X is H(X)= Ž p. bg. p. = no. of bits on average required to express observed values of X.
Recall: IF X is a random variable with outcomes X = x: (1 \le i \le n) with prob. p. ($\ge p$: =1) then the binery entropy of X is $H(X) = \stackrel{>}{\ge} p$: by $\stackrel{>}{p}$: = no. of bits on average required to express observed values of X.
= no. of bits on average required to express observed values of X.
= no. of bits on average required to express contract values of X. When expressing information in base q, the when expressing information in base q, the
When expressing information in base q, the
Ol V
Starting Friday, more to CR144

Eq. A logie is 8 bits 2" = 256 If X can be encoded using N bits then it takes N bytes. If I buy a dack of cards, its entropy is 0 in the sense that no information is required to express the order of the deck. After suitifling the deck, it takes 225.58 bits to express the order 2nd has of Thermodynamics 2nd has of Thermodynamics 2nd has of Thermodynamics 2nd has 7.8 inmite video linked on course website (about 68 decimals). 2nd Law of Termodynamics Watch the 7.8 minute video linked on course website p. 19 Shamon's Source Coding Theorem (for channel without noise) A channel is used to send a stream of symbols e.g. O's and I's reliebly at a certain muber of bits per second Information coming from a source X has finitely many outcomes with entropy $H(X) = H_{c}(X)$ bits per symbol eg. X.,..., X. or A,B,C,D,... This information can be reliably send and received at a maximum rate $\frac{C}{H}$ bits/symbols/sec. Eq. X is a stream of characters E,T...,D (first example) with prob. 0.50, 0.15..., 0.02, H(X) = 1.55 bits/cher. If I transmit into. from this source using a channel with capacity 21 bits/sec. then I can satisfy transmit loss that (31 bits/sec = 20 char./sec. We can get within any pos 2 of this optimal rate i.e. 20-2.

Suppose X Y are independent random variables each with finitely many possible values X has value x; with prob. $p_i \in (0,1)$ ($1 \le i \le m$) Y has value yo with prob. gi & (0,1), Eqi=1 $H(x) = \sum_{i=1}^{\infty} P_i \log \frac{1}{p_i}$ $H(Y) = \sum_{i=1}^{n} q_i \log \frac{1}{2}$ The pair (X, Y) has value (x;, y) with prob. P:2j $H(X,Y) = \sum_{ij} p_i q_j \log(p_i q_j) = \sum_{ij} p_i q_j (\log p_i + \log \frac{1}{2})$ = $\sum_{i,j} p_i q_j \log \frac{1}{p_i} + \sum_{i,j} p_i q_j \log \frac{1}{q_j}$ $= (\underset{j}{\Xi} p; bg \neq) \underset{j}{\Xi} q_{j} + (\underset{j}{\Xi} p;) \underset{j}{\Xi} q_{j} bg \neq j = H(x) + H(Y).$ If X,Y are dependent $H(X,Y) \leq H(X) + H(Y)$

· · · · · · / · · · 0 0 = * \$ Maxwell's Demon Computation requires some minimal expenditure of energy when itializing memory registers, and when reading memory registers, resulting in the creation of entropy Information is any thing representable (usually without loss of information) as springs of tetters over a given alphabent of q letters. Springs of tetters are words. When q=2 we have 2 letters (usually 0, 1) called bits. A code is a scheme for translating words to words. Sadi Carnot We are not doing cryptography. In the theory of error-correcting codes ("coding theory") information is encoded before transmission so that the information can be protected from noise in the channel.

			• • •		• •		• •		en	(60	le l	· ·		se	sat		• •	0 0	3		• •	0	re	cé.	Ved	
Msg. No.	Message Text	Scheme 1 ("As Is") Codeword		P	lain	1	ēxt		•	· ·	•	7	4	de	lwe	ord	}		Z				1		2.0	
0	0000	0000		• •		01) [•		•		•	10	11	•	• •	h	ois	7	1		1	100	27	• •
1	0001	0001				0 0			0	• •					0 0			cl	an	Je	·X.	0			0 0	
2	0010	0010		• •	• •	• •	• •	• •	•						• •		• •	• •				•	• •		• •	• •
3	0011	0011		• •	• •	• •			•	• •	•		• •			•		• •		•		•	• •	•	• •	
4	0100	0100																								
5	0101	0101		• •	• •	• •			•	• •		• •					• •	• •		•	• •	•	• •	•	• •	
6	0110	0110		• •	• •	• •			•		•				• •	•	• •	• •		•		•	• •	•		
7	0111	0111		• •	• •	• •			0	• •		• •			• •		• •	0 0	• •				• •		• •	
8	1000	1000		• •	• •	• •			•	• •		• •			• •		• •			•	• •	•		•	• •	
9	1001	1001		• •	• •	• •	• •	• •	•		•				• •	•	• •				• •	•	• •	•	• •	
10	1010	1010																								
(11)	(1011)	1011							•	• •							• •					•				
12	1100	1100		• •	• •	• •	• •		•		•				• •		· ·	• •		•	• •	•	• •	•	• •	
13	1101	1101				• •																				
14	1110	1101		• •	• •	• •			0	• •		• •			• •		• •	• •		•	• •	•	• •		• •	
				• •	• •	• •	• •	• •			•				• •	•	• •	• •	• •		• •	•	• •	•	• •	
15	1111	1111																			• •					

Msg. No.	Message Text	Scheme 1 ("As Is") Codeword	Scheme 2 (Parity Check) Codeword
0	0000	0000	00000
1	0001	0001	00011
2	0010	0010	00101
3	0011	0011	00110
4	0100	0100	01001
5	0101	0101	01010
6	0110	0110	01100
7	0111	0111	01111
8	1000	1000	10001
9	1001	1001	10010
10	1010	1010	10100
11	1011	1011	10111
12	1100	1100	11000
13	1101	1101	11011
14	1110	1110	11101
15	1111	1111	11110

•	•		Zela)/aa		2		'P	ar	ih	1.4	e he	20	6	> [6)		īs		2		ex	a	~¶	le	•	of oit	- -	٩	
1	-	eri	-01	~	d	le	fec	tù	7) Coc	le	•	•	P	f		de	te	ct	5.	a		52	g	ه	1	o it	-	Æ	2.4
ı	ντ	the	m	t		ei	ng	F.	al	te	•	-6	2	G	-	eđ	<u>,</u>	it										•	•		
•	•	•	•	•	•		Ĩ	•	•	•	•	•	•	•	•		•		•	•	•	•	•		•	•	•	•	•	•	•
																												•			
																												•			
																												•			
																												•			
																												•			
																												•			
																												•			

Msg. No.	Message Text	Scheme 1 ("As Is") Codeword	Scheme 2 (Parity Check) Codeword	Scheme 3 (3-Repetition) Codeword
0	0000	0000	00000	00000000000
1	0001	0001	00011	00000000111
2	0010	0010	00101	000000111000
3	0011	0011	00110	000000111111
4	0100	0100	01001	000111000000
5	0101	0101	01010	000111000111
6	0110	0110	01100	000111111000
7	0111	0111	01111	000111111111
8	1000	1000	10001	111000000000
9	1001	1001	10010	111000000111
10	1010	1010	10100	111000111000
11	1011	1011	10111	111000111111
12	1100	1100	11000	111111000000
13	1101	1101	11011	111111000111
14	1110	1110	11101	111111111000
15	1111	1111	11110	111111111111

plain text enade This 3-repetition code is a 1-error correcting ade. If at wost one bit flip occurs during transmission, we can sately This code has a 3%% information rate ({ of the bits transmitted carry actual information; the other = of the bits sent are used to provide redundancy for the purpose of error correction) If one wants to send 4 bit messages and have one error correcting ability one can achieve much higher than 33 % information rote. You can achieve 57% information rate.

Table A: Four Schemes for Encoding of 4-bit Message Words

Msg. No.	Message Text	Scheme 1 ("As Is") Codeword	Scheme 2 (Parity Check) Codeword	Scheme 3 (3-Repetition) Codeword	Scheme 4 (Hamming) Codeword
0	0000	0000	00000	00000000000	0000000
1	0001	0001	00011	00000000111	0001111
2	0010	0010	00101	000000111000	0010110
3	0011	0011	00110	000000111111	0011001
4	0100	0100	01001	000111000000	0100101
5	0101	0101	01010	000111000111	0101010
6	0110	0110	01100	000111111000	0110011
7	0111	0111	01111	000111111111	0111100
8	1000	1000	10001	11100000000	1000011
9	1001	1001	10010	111000000111	1001100
10	1010	1010	10100	111000111000	1010101
11	1011	1011	10111	111000111111	1011010
12	1100	1100	11000	111111000000	1100110
13	1101	1101	11011	111111000111	1101001
14	1110	1110	11101	111111111000	1110000
15	1111	1111	11110	111111111111	1111111

symbols a sword is a spring of n letters over A. There are q work A code is a subset $C \subseteq A^{"}$ The (Hamming) distance between two words w, w' e C denoted d(w, w'), is the number of positions in which they differ, eg. d(1011, 1110) = 2 The Hamming code listed here satisfies d(w,w') >3 for all w = w' in the code. 3 is the minimum distance of the code. d is a metric : d(w, w') >0 for any two words w, w' Equality of w=w'. $d(\omega',\omega) = d(\omega,\omega')$ d(w, w') + d(w', w") > d(v, w") (triangle If a code CCA" has min. distance d then it is e-error correcting where $e = \lfloor \frac{d-1}{2} \rfloor$. In particular in order to correct e errors, we want $d \ge 2e+1$.

If we send a word w and due to errors this is received as w' where $d(w,w') \leq e$, then w is the unique codeword at distance $\leq e$ from w' (assuming C has min. distance $d \geq 2e+i$). If w, w' = C were both at distance se tran w' then d(w, w') s e+e=2e Big question: what is the maximum number A(n,d) of colewords in a code C S A" having a eg A₂(7,3) = 16. The existence of the Hamming code gives A₂(7,3)≥16. Hamming bound (an upper bound) e= [2] Minered Constitut Shere-picking $A_q(n,d) \leq \frac{2}{\sum_{k=0}^{\infty} {\binom{n}{k}} {\binom{q-1}{k}}^k}$ FILION eg. $A_2(7,3) \leq \frac{2'}{e^2}$ $e = \left\lfloor \frac{3-1}{2} \right\rfloor = 1 \right\rfloor_{k=0}^{k=0} {\binom{9}{k}}$ Codes achieving equality in the Hamming bound) are perfect codes. The binary Hamming codes gives an infinite family of perfect codes

= {v \in L v= (v1,, v8) l = binary tominio è = extendendo Eucliden distance b Equivalently : shortes	nery Hamming code and &-module i.e. additive abol.gp. V mod 2 gives a codeword , v. ∈ Z g code = § cocococo, coolIIII,, II = { pocococo, DoolIIII,, II = { pocococo, DoolIIII,, II E has I words i words i words t words t words v ≠ v' in Es is pt t words vectors in Es have I6.19 = 224 lattice vectors e	in e_{3} 11111_{3} $ e =16$ 1111111_{3} $(\hat{e})=16$ frieget 0 frieget 0 1 least 2 min length 2	weight of w = d(w, o)
$(0,0,\pm 2,0,0,0,0,0)$ Unit bells in \mathbb{R}^{8} cen	16.19 = 224 lattice vectors a 2.8 = 16 210 roof vectors in Es terel at lattice vectors in E	s lattice achieve the densest	possible packing in R ⁸
· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·

Scheme 4	The generator matrix of this Hamming code is
(Hamming) / Codeword	
0000000	$G = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$
0001111	The encoding x - x & gives the Hamming codewood for each plaintext word x
0010110	The encoding $x \mapsto x \in$ gives the thanking colonized for each plaintext word x eq. the plaintext for 11 is $x = 1011 \in F^4$, $F = \overline{10}, 1\overline{3} = \overline{12}/27L = \overline{15}$ (arithmetic mode)
0011001	
0100101	(6= [10]]][0][0][10]] = [10][0][0] (0)[10]] = [10][0][0] (unplemented very efficiently (unplemented very efficiently
0101010	The chore motion for the Hanning code is in real time, much faster
0110 <mark>011</mark>	$H = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$.
0111100	If a word we F' is received, we decode by first computing the error syndrome
1000 <mark>011</mark>	If a word wet is reaction, we thank of the second of the second
1001100	$\frac{Hw^{T}}{3x7} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ The Hamming code is the row space of G and it's the null space of H.
1010101	null space of H.
1011010	If we receive an erroneous () when F (a vector space)
<mark>1100</mark> 110	If we receive an erroneers $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
1101 <mark>001</mark>	$H(w') = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
1110 <mark>000</mark>	LIOIDIDI = [1] Little riginal message sent
1111	

Scheme 4 (Hamming) Codeword a b c d e f g 0010100 1 0000000 2 0000000 3 0001111 5 0000011 4 0000011 5	· · · · · · · · · · ·
0001111 6 1001100 5 6 7	
0011001 fixing k≥1, let H be the k×n matrix (n=2 ^k -1) whose columns are all	binary .
•0100101 integers in \$1,2,, n} (written in binary). This gives a party check	matrix for
0101010 a perfect terror correcting code.	
0110011 eg. $k=2$ gives $H = \begin{bmatrix} 0 & i \\ 1 & 0 \end{bmatrix}$ gives the code $\{000, 111\}$, the 3-repetition co	ke i s s s s s
0111100	
-1000011	
1001100	
1010101	
1011010	
1100110	
1101001	
1101001	· · · · · · · · ·