
Information Theory

Boøk II

Multiplication & rational function incoloniental using a single shift register e.g. any multiplication Turbo codes (1993) are a class of codes combinations of gates including used for encoding strams multiplication rational Function splitters & interleavers permitations

duplicate permite multiply titelless F(x) C F((x)) eg. for F= #= \$0,13 First method $f(x) = \frac{1+x^2+x^5}{x+x^2+x^4} = \frac{1+x^2+x^5}{x(1+x+x^3)} = \frac{1}{x} \left[\frac{1+x^2+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x+x^3+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x+x^2+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x+x^2+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x^2+x^5}{1+x+x^3} \right] = \frac{1}{x} \left[\frac{1+x^2+x^5}{1+x+x^5} \right] = \frac{1}{x} \left[\frac{1+x^2+x^5}{1+x+x^5} \right]$ (a+b) = a+b2 $(a+6)^{4} = q^{4}+6^{4}$ $\frac{1+\gamma^{2}+\pi^{5}}{1+(\pi+\pi^{3})} = ((+\pi^{2}+\pi^{5})(1+(\pi+\pi^{3})+(\pi+\pi^{3})^{2}+(\pi+\pi^{3})^{3}+(\pi+\pi^{3})^{4}+(\pi+\pi^{3})^{5}+\cdots))$ $= (1+\pi^{2}+\pi^{5})(1+(\pi+\pi^{3})+(\chi^{2}+\pi^{6})+(\pi^{3}+\pi^{5}+\cdots)+(\chi^{4}+\cdots)+(\chi^{5}+\cdots)+\cdots)$ $(\chi^{3}+3\chi^{5}+3\chi^{7}+\chi^{9})$ $= (1+x+x^{5})(1+x+x^{2}+x^{4}+\cdots)$ $= 1 + x + x^3 + x^5 + \cdots$ $f(x) = \frac{1}{2} \left(1 + x + x^3 + x^5 + \cdots \right) = \frac{1}{2} + 1 + x^2 + x^4 + \cdots$

F = Fz = 80,13 for the time being
The irreducible (monic) polynomials in Flr]: degree irred. polys 1 x, x+1 2 x+x+1 al polys of degree 2.
lagree ined poys
1 x, x+1 A primitive 2 x x 2 x x 2 x 1 A prive 2
$3 \qquad x^{3} + x + i, x^{3} + x^{2} + i \qquad x^{7} + x^{2} + x^{$
$\frac{4}{1} = \frac{x + x + 1}{x + 1} + \frac{x + x + 1}{x + 1} + \frac{x + x + 1}{x + 1} = \frac{x + x + 1}{x + 1}$
See Mac Williams & Slowne, The Theory of Error - Correcting Codes for more extensive lists of irreducible polynomials. What are all the cyclic (linear) binary codes of length 7? There are exactly 8 of them. (why?) • subspace of F ^T , F: F= F0, 13 • subspace of F ^T , F: F= F0, 13 • under early shift (209, 9, 9, 9, 9, 9, 9) (9, 90, 9, 9) (9, 9) (9, 9) (9, 9)
1) If at all the malie discon bingon ades of length ?? There are proved & of them (why?)
• encode of F^T $F = [0,1]$
eg. $3(0000000)$ f = 3(0000000) f = 3(0000000, 11111113) f = 3(00000000, 11111113) f = 3(00000000, 11111113) $him C + dim C^{\perp} = n$ $him C + dim C^{\perp} = n$
$f = \{0,000000, 11,11,1,1,1,1,1,1,1,1,1,1,1,1,$
$\left(\begin{array}{c} f^{7} \leftarrow g(x) = 1 \\ f^{7} \leftarrow g(x) = 1 \\ f^{7} \end{array} \right) \left(\begin{array}{c} h(x) = \pi^{7} - 1 \\ f^{7} \leftarrow f^{7} \end{array} \right) \left(\begin{array}{c} h(x) = \pi^{7} - 1 \\ f^{7} \leftarrow f^{7} \end{array} \right) \left(\begin{array}{c} h(x) = \pi^{7} - 1 \\ f^{7} \leftarrow f^{7} \leftarrow f^{7} \end{array} \right) \left(\begin{array}{c} h(x) = \pi^{7} - 1 \\ f^{7} \leftarrow f^{7} $
{ words in F of over weight } = (1100000, 1010000, 1001000, 1000010, 1000010, 1000001) [011100]
Hamming [7,4,3] code #: < 1101000, 0110100,, 1010001> (all gale on 15 of 1101000 spice (25 and))
Swords in F of oven weight 3 = (1100000, 101000, 1001000, 10000, 100000, 100000, 100000, 10000, 100000
The Aug 21 , dim 21=3 is a [734] - code [7
Its devel \$4 [±] , dim \$4 [±] =3 is a [7,34] - code. 1 24 [±] have 1 codeword of weight 0 7 4 [±] have 1 codeword of weight 0 4 [±] 01([±] ola 5-2,47)
$\mathcal{X}^{\perp} = \mathcal{X} \cap \langle 1 1 \rangle$

X-1 Ength E F(x]	$\chi^{7} - 1 = (\chi - 1) (\chi^{6} + \chi^{5} + \chi^{4} + \chi^{6})$	$\chi^{3} + \chi^{2} + 1$ = $(\chi - 1)(\chi^{3} + \chi + 1)(\chi^{3} + \chi + 1)(\chi^{3} + \chi^{2})(\chi^{3})$	$(x^{3} + x^{2} + i)$ $(x - \beta)(x - \beta^{2})(x - \beta^{4})$
actually r+1 F= #		(x-a)(x-a)	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	= $\chi(x-1)(x-q_2)(x-q_3)\cdots(x-q_q)$ $\chi^{2}o$ q-1 distinct roots which are then E = F[w] = S	q=0, q=1, q;	23,, og are the field clanat
If de the is a root of	$ \begin{array}{l} $	$q_{0}+q_{1}q_{2}+q_{2}q_{1}^{2}: q_{0}, q_{1}, q_{2} \in \mathbb{F}_{2}$ $\{0, 1, q, q+1, q_{1}^{2}, q_{1}^{2}+1, q_{1}^{2}+q_{1}^{2}, q_{2}^{2}$ automorphism of \mathbb{F}_{8} .	ξ. + α+1.3
$(u + v)^{2} = u^{2} + v^{2}$ $(uv)^{2} = u^{2}v^{2}$	Squaring is an	automorphism of #3.	· · · · · · · · · · · · · · · · · · ·
If $f(x) \in F[x]$ is root of $f(x)$.	irreducible of degree d, then	$\mathbb{F}_{p}[\mathbf{x}]/(\mathbf{f}(\mathbf{x})) \cong \mathbb{F}_{p} = \mathbb{F}_{p}[\mathbf{g}]$] where β is a + $q_1\beta + q_2\beta^2 + \cdots + q_{L_1}\beta^{L_1} = q_1eH_2$
If in fact IF1 = E0, 1, p prinitive element	$\beta_{\beta}^{2}, \beta_{\gamma}^{3}, \dots, \beta_{\gamma}^{d-2}$ then we say and we say fix is a primitive pe	s is a an algeb	$ \begin{array}{c} +q, \beta + q_{2}\beta^{2} + + q_{1}\beta^{4} & q, eF_{\beta} \\ to F_{1} \supset F_{1} \\ ra \end{array} $
If $f(x) = x^4 + x^3 + x^2 + x + x^3$	and $\beta \in \mathbb{F}_{16} = \mathbb{F}_{2^4}$ is a root doesn't give all of \mathbb{F}_{16} .	of f(x) then B=1 since B	is a root of fix) (p-)(p ¹ +p ² +p ² +p ² +r(x+1)) = 0
A ARCITCH AR		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

There are eight ways to factor $x^{7}-1 = g(x)h(x)$ in $F_{2}[x]$ In each case $g(x)$ is a generator poly. and $h(x)$ is a painty check poly. for a cyclic co over $F_{2} = Eg_{1}^{2} = F$ Gyclic codes $\leftarrow >$ ideal	de of length 7 s in $F[x](x-1)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
BCH bound : a bouer bound for performance of a cyclic code. Consider a cyclic code of length n over F , i.e. an ideal in $\frac{F_2[X]}{(X-1)}$ with gen. pdy. parity check poly. $h(X)$, $X^n - 1 = g(x)h(x)^2$, $g(x)$ prinitive, β root of $g(x)$ in F_2 , $r =$ and $\beta \beta^2, \dots, \beta^n$ are roots of $g(x)$, then the code has min. distance $= s$.	g(x), deg g(x),
For Hamming $[7,4,3]_2$ code, β root of $g(x) = 1+x+x^3 \in F[x]$, $\beta \in \mathbb{F}_8 = \mathbb{F}[\beta]$ Also β^2 by Freshman's Decame	· · · · · · · · · ·
$\begin{array}{l} (+\beta + \beta^{3} = 0 \\ (+\beta + \beta^{3})^{2} = 1 + \beta^{2} + \beta^{6} = 0 = 1 + \beta^{2} + (\beta^{2})^{3} \implies 24 \text{ has min. dist. } \geq 3, \end{array}$	
BCH : R.C. Bose Dijen Ray-Chandhuri Hocquenghan	

The Gilbert-Varshamov Bound (GV-bound): a lower bound for existence of good codes min. distance ≥d i.e. d(w,w') ≥d for all w≠w'in C. $A_2(n,d) = max$. |C| s.t. $C \subseteq A^n$, |A| = q with min distance $\geq d$ e= $\lfloor \frac{d-1}{2} \rfloor$ = error-correcting capability. Ball of radius r in A" centered at $0 \in A^n$ has cardinality $|B_{r}^{(j)}| = \sum_{k=0}^{\infty} {\binom{n}{k} (q-1)^k}$ $|| = ||B_0|| < ||B_1| < ||B_2|| < \cdots < ||B_n|| = ||A^n|| = ||Q^n||$ balls of radius e centered at adamonds we c are required to be disjoint Hamming bound: Ag(n, d) 5 $\frac{9}{|B_e|}$ $\bigsqcup_{\mathbf{B}_{p}(\omega)} \subseteq A^{n} \implies |\mathcal{C}| \cdot |\mathcal{B}_{p}(\omega)| \leq q^{n}$ In the other direction the CV-bound $A_q(n,d) \ge \frac{2^n}{|B_{d-1}(0)|} \quad so \quad \frac{q^n}{|B_{d-1}(0)|} \le A_q(n,d) \le \frac{q^n}{|B_e(0)|} \quad we$ Proof: Let $C \subseteq A^{\circ}$ be any q-any code with $|C| = A_q(n, d)$. We claim existence proof only $\frac{\bigvee B_{\mu}(w) \ge A^{*}}{\operatorname{But}} \xrightarrow{\operatorname{Codes}} \operatorname{satisfying}_{\text{this condition by greedy construction.}} \xrightarrow{\operatorname{We} \mathcal{C}} \operatorname{But}_{\text{such}} \operatorname{codes}_{\operatorname{sree}} \operatorname{sree}_{\operatorname{such}} \operatorname{such}_{\operatorname{such}} \operatorname{satisfying}_{\operatorname{sot}} \operatorname{satisf} \operatorname{satisfying}_{\operatorname{sot}} \operatorname{satisf} \operatorname{sati$ Recommended viewing: You Tube videos on coding & info. theory (including deg. gron. codes) by Mary Woottons $S_0 | C | (B_L(0)) \ge |A^n| = 2^n$

Asymptotic version of 6V-bound due to Shannon Fix $0 < S < 1$ $ B_{S_n}(0) \approx A^n ^{\frac{h_2(S)}{2}} = q^{\frac{n_2(S)}{2}}$,	$0 \leq h_{CS} \leq 1.$
1 18 c > 1 c > 1 c > 1	· · · · · · · · · · · · · · · · · · ·
$\frac{\log_2 B_{S_n}(0) }{ t_i _{S_n}(0) } \xrightarrow{n n_2(s)} n n_2(s)$ $\frac{\log_2 B_{S_n}(0) }{ t_i _{S_n}(0) } \xrightarrow{l n_1(s)} 1 a n \to \infty.$	then y and o - (y, t)
$\log_{2} (B_{s_{n}}(o)) \sim nh_{q}(\delta).$	· · · · · · · · · · · · · · · · · · ·
More precisely $nh_2(\delta) - o(1) \leq \log_2 B_{\delta n}(0) \leq nh_2(\delta)$	· · · · · · · · · · · · · · · · · · ·
The gary entropy function bivary entropy function $h_2(q) = -\delta \log_2 \delta - (1-\delta)$ Eq. consider a random stream of information coming from lett with letter x; having forguency $\frac{17}{4}$ ($2 \le i \le q$) δ (1-p single class form	$\log_{12}(1-3) = \partial \log_{12} \overline{s} + (1-3) \log_{12} \overline{1-s}$ Ers in A, [A]=g, A = $\{x_1, \dots, x_q\}$
with letter x_i having frequency p_i^T $(2 \le i \le q)$ & $(1-p)$ single char.form H (this stream) = $\sum p \log \frac{1}{p} = -\sum p \log p = -(1-p) \log (1-p) - (q_i) \frac{p}{q_i}$ b	$b) + f_{1} + f_{1} + \dots + f_{r} = 1.$ $bg - f_{r} = l \log (q_{r}) - p \log q - (r_{p}) \log (r_{p})$

$h_{1}(S) = S \log_{1}(q-1) - S \log_{2} S - (1-S) \log_{2}(1-S)$	· · · · · · · · · · · · · · · · · ·
1 h. 1 h.	
(q=2)	
increasing 2	Singloton bound: d ≤ n-k+1
$h_q(x) = x \log_q(q-1) + \frac{\log_2}{\log_q} h_{(x)} \qquad \text{Let } x \to \overline{1}.$	$\frac{1}{4} \leq 1 - \frac{1}{4} + \frac{1}{4}$
$h_q(x) \rightarrow (ag_q(q-i)) as x - \tau I$.	$\frac{1}{R+S} \leq 1$
For long codes $(n \gg 0)$ over a fixed alphabet $ A =q$, we ansider the information rate $R = \frac{\log_2 C }{n} = \frac{k}{n}$ in the case of an $[n, k]_q$ -vole	Singleton bourd
relative distance & 1/n	bound. (upper bound.
rolative error-correcting copability = - d	(lower hand)
	$R \ge 1 - h_{e}(S)$