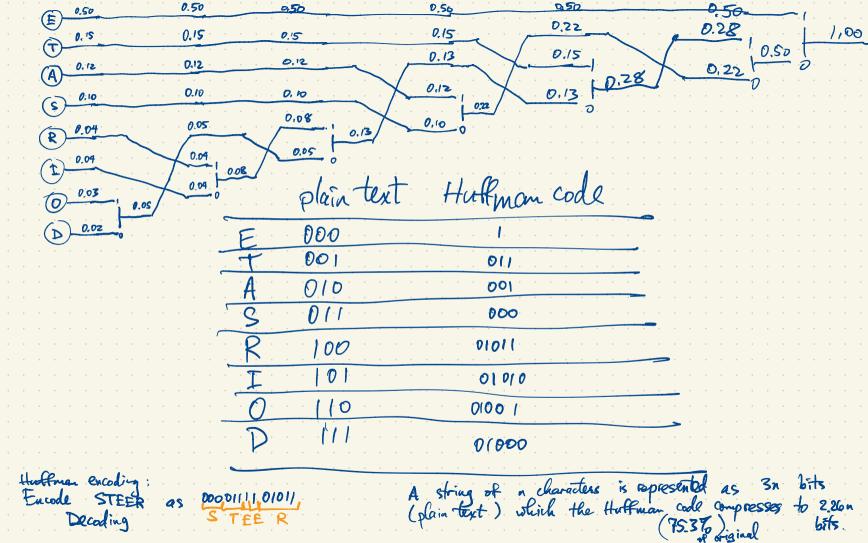


sufor metion	theory:																	
· Shann	on information		tistical	measu	rement	of	inform	moctie	n b	enten	t ;							
· · · · · · · · classi	cal information	theor	y) .															
Kelma	poror information	n (al	yorithm	nic in	bruto	er).										٠	 ٠	
· Quant	im intermetion		•											 •		٠	 •	 •
eital		654																
tograph	Left	P1095-00	80 KB															
MB bitmap	350 KB jpg :															٠		
																		 ٠
f document																	 ٠	 ٠
SOKB -	2.3 KB		7 24	KB										 •		٠	 •	 ٠
loss-loss	1																	
Conclusion	/																	
	, /															٠		
a perfect co	py of																	
the aria	and con																 ٠	 ٠
he extract	ed/recovered.																 •	 ٠
				2 1 0					-	9	_							
nsider an int	ormation str	cam c	ompos	ed of		. 7	_A,	3,	R	<u> </u>	0,		7					
tream of indepen	let Cottons)	freq.		0.50	0.15	,				•	1.	0.02					
here of market		<i>1</i>													 			

. .



Example 2 of Huthman coding: Stream of 0's and 1's X= Huffman code $X = \begin{cases} 0 & \text{with polity} \\ 0 & \text{with polity} \end{cases}$ (binomial distribution) No compression Take pairs of kits Hattonan code Plain text On average, a plain text file of n bits encodes as 17 n = 0,9444 n bits Plain text Huffman code Better: encode triples of bits 110 111 - 4/27 110 - 4/27 101 - 4/27 011 - 1/27 10 i דדע 0111 100 100 0110 010 010 -3/27 001 0101 000 0100 00 2/27 3/21 On average, n'bits is encoded as 76 n bits What is the limit of the compression ratio (as the block size -> 0.9383 n bits.

0.9183 n bits is the limit for compressing n bits from this stream

Shannon's first theorem showed that this stream has an entropy of

 $H(x) = \frac{1}{3} \log \frac{1}{\sqrt{3}} + \frac{20}{3} \log \frac{1}{2\sqrt{3}} \approx 0.9183$

Example 1 Huffman code with blocksize I character gives n bits $\rightarrow \frac{226}{3}$ n bits ≈ 0.753 n bits Entropy: Sp. logp: \$ 1.55678 bits per character P: = 0.5, 0.15 ..., 0.12 (i=1,2,...,8)
Compare: plain text encoding of character requires Binary entropy function: A biased coin has heads with prob. p 0
With independent tosses

H (coin) = p log + (1-p) log = 1-p = no. of bits (on average) to express the outlant

each coin flip. Recall: If X is a random variable with outcomes

X= x: (1≤ i≤ n) with prob P: (Ep:=1) 1 HCP then the binary entropy of X is H(X)= & p. log to = no. of bits on average required to express observed values of X. when expressing information in base q the grany entropy function $H_{q}(X) = \sum_{i=1}^{n} f_{i} \log_{q}(\frac{1}{p_{i}}) = \frac{1}{\log_{q}} H_{z}(X)$ Starting Friday, more to CR144

Eg A byte is 8 bits 2 = 256 If X can be encoded using N bits then it takes N bytes. If I buy a dock of cards its entropy is 0 in the sense that no information is required to express the order of the dock. After shuffling the dock, it takes 225.58 bits to express the order tignore jokens log 52! # 225.58

2nd Law of Theomodynamics

(about 68 decimals). 2nd law of Termodynamics Wotch the 7-8 muite video linked on course website p. 49 Shamon's Source Coding Theorem (for channel without noise) A Chammel is used to send a stream of symbols eg. 0's and 1's reliably at a certain number of bits per second Information coming from a source X has finitely many outcomes with entropy $H(X) = H_{\epsilon}(X)$ bits per symbols eg. X,..., In or A,BC,D,...
This information can be reliably send and received at a maximum rate H bite/symbols symbols for Eq. X is a stream of characters E,T,...,D (first example) with prob. 0.50,015..., 0.02, H(X) = 1.55 bits/cher.

If I transmit into from this source using a channel with capacity 21 bits/sec. then

I can safely transmit loss that (31 bits/sec = 20 char./sec.

We can get within any pos & of this optimal rate i.e. 20-E

Each with finitely many possible values

X has value x; with prob. P. \(\(\begin{array}{c} \) \(\left(1 \left(1 \left(1 \right) \right) \)

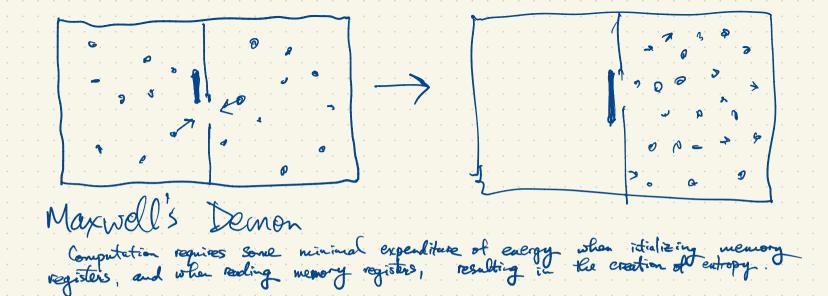
$$H(x) = \sum_{i=1}^{m} P_i \log \frac{1}{P_i}, \quad H(Y) = \sum_{j=1}^{m} Q_j \log \frac{1}{Q_j}$$
value (x_i, y_i) with $prob$. P_iQ_j $\sum_{1 \le i \le m} P_iQ_j = \sum_{1 \le i \le m} P_iQ_$

The pair (X, Y) has value (x; y;) with prob. P.2;

H(X,Y) = & Piqj log (Piqj) = & Piqj (log pi + log qi) = 2 Pigilog pi + 2 Pigilog gi = (\(\mathbb{E}\)\(\mathbb{P}\)\(\mathbb{E}\)\(\mathbb{P}\)\(\mathbb{E}\)\(\mathbb{P}\)\(\mathbb{E}\)\(\mathbb{P}\)\(\mathbb{E}\)\(\mathbb{P}\)\(\mathbb{E}\)\(\mathbb{P}\)\(\mathbb{E}\)\(\mathbb{P}\)\(\mathbb{E}\)\(\mathbb{P}\)\(\mathbb{E}\)\(\mathbb{P}\)\(\mathbb{E}\)\(\mathbb{P}\)\(\mathbb{E}\)\(\mathbb{P}\)\(\mathbb{P}\)\(\mathbb{E}\)\(\mathbb{P}\

If X,Y are dependent $H(X,Y) \leq H(X) + H(Y)$

Y has value y, with probigie (0,1), Eqi=1



Sadi Carnot