
 
 

Data Compression 
 

Data compression is any process by which a digital (e.g. electronic) file may be 

transformed to another (“compressed”) file, such that the original file may be fully 

recovered from the original file with no loss of actual information.  This process may be 

useful if one wants to save storage space: for example if one wants to store a 3MB file, it 

may be preferable to first compress it to a smaller size.  Also compressed files are much 

more easily exchanged over the internet since they upload and download much faster.  

We require, however, the ability to reconstitute the original file from the compressed 

version at any time. 

 

This process is different than what often happens in ‘compressing’ a digital photograph, 

say, where significant reduction in file size is possible by sacrificing image resolution: a 

high-resolution 2MB digital image may be transformed to a 50KB image which is more 

appropriate to put on your website (since 2MB files take a long time for visitors to your 

website to download) but the 50KB version is coarser or grainier than the original image, 

and the original version cannot be recovered from the 50KB version.  We are not 

considering this type of ‘lossy compression’; it is understood that here we are not 

tolerating any degradation of data. 

 

It must also be observed that not every file can be compressed to a smaller size (without 

loss of actual information).  Otherwise we could compress a 3MB file to 1.2MB (say), 

then compress it again to 350KB (say), then compress it again to 70KB (say), etc., 

repeating this process until the resulting file is only 1 byte in size.  Clearly we cannot 

expect every 3MB file to be compressible in this way since there are only 28=256 

different possible 1-byte files, but a much larger number of 3MB files (actually 21073741824 

such files, a number of more-than-astronomical proportions!).  Typically text files are 

highly compressible; binary executable files are somewhat compressible; and audio files 

or digital images are rather incompressible since they are already compressed. 

 

If a 3MB file can be compressed to a 1.2MB file with no information loss, why would we 

have any further need for the 3MB file?  If the 3MB file is plain text (for example your 

email correspondence for the year 2003) then it would not be readable in compressed 

form.  Or if the 3MB file were a binary executable file, it would not be recognizable in 

compressed form by your computer’s operating system.  So even if a 1.2MB file 

contains, in principle, all the information of your original 3MB file, it will usually be 

necessary to recover the original file (at least temporarily) from the compressed version, 

before the information can be accessed or used.  And it will be necessary to have efficient 

algorithms for both the compression and decompression of data. 
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Having read my argument above (about why it is ludicrous to expect every file to be 

compressible), you might well wonder how it is that file compression is possible at all.  

Upon close inspection, however, you will see that my argument really only shows why 

not all files are compressible.  It is still reasonable to expect that many everyday files are 

compressible using a compression utility such as WinZip®, and others are not.  The files 

that are more successfully compressible are those with a high degree of repetition or other 

observable pattern.  If, on the other hand, WinZip is applied to a binary file having a 

highly random appearance with no evident pattern, the utility may actually return a 

“compressed” file that is larger than the original. 

 

Consider, for example, a 1MB binary file consisting of a string of zeroes.  Since there are 

23=8 bits in every byte, such a file may arise as a bitstring ‘000…0’ of length 

220×23=223=8388608.  The same information may be summarized in a much smaller file 

that simply tells WinZip “This is a file consisting of 8388608 bits, all of which are 

zeroes”.  Similarly, a 1MB binary file consisting of the bitstring ‘010101…01’ can be 

summarized in a much smaller file that tells WinZip “This is a file consisting of 8388608 

bits formed by the bitstring ‘01’ repeated 4194304 times”.  Most large files will not be as 

highly compressible as these extreme examples, but all occurrences of pattern provide at 

least some opportunity for compression; for example, if the character string ‘the’, or 

some other sequence of symbols, is represented frequently in a file, this can be 

represented in an abbreviated form in the compressed file. 

 

Ideally, we might hope for a ‘perfect’ compression algorithm that compresses ‘most’ 

everyday files as much as possible (recognizing that any such algorithm will actually 

enlarge some files, those files with no exploitable repetitions or patterns).  Such an 

algorithm, we expect, would never be outperformed by any other compression algorithm.  

Surprisingly, no such optimal algorithm exists!  What do I mean by this?  Do I mean that 

no one has figured out yet how to design the best compression algorithm?  No!  I am 

telling you that no such algorithm is possible, even in principle.  Worse than that, there 

cannot even exist an algorithm telling the smallest size to which a given file can be 

compressed.  (Note that here we are presumably asking for less than the optimally 

compressed file, if we are asking only for the size of the optimally compressed file.)  It is 

a mathematical theorem that no such algorithm can possibly exist.  Just as trisecting an 

angle with a straightedge and compass is impossible (there is also a theorem to this 

effect). 

 

The good news is that there are algorithms that do a reasonably good job of compressing 

many of our everyday computer files, especially text files.  No such algorithm is optimal, 

but some are better than others, and those with better compression ratios tend to require 

more execution time. 

 

We now proceed to explain how data compression is possible using Huffman encoding 

works.  This will not only explain how practical data compression is possible, but also 

provide a foundation for understanding entropy as a measure of the actual ‘information 

content’ of an information source. 
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Huffman Encoding:   Example 1 

 

A file containing English language text, is a stream of characters (upper and lower case 

Roman letters, digits, punctuation marks, and other symbols such as ‘$’, ‘%’, etc.) with 

varying frequencies.  Typically the blank symbol ‘ ’ will be most frequent, followed by 

the letter ‘e’, etc. with symbols ‘q’, ‘#’, appearing infrequently.  Moreover certain 

combinations of characters will occur more frequently than others. 

 

We will model this situation by adopting a simplified alphabet with only eight possible 

characters E, T, A, S, R, I, O, D occurring with frequencies as given by the following 

table: 

 

character E T A S R I O D 

frequency 0.50 0.15 0.12 0.10 0.04 0.04 0.03 0.02 

 

In practice our file will typically be given in binary form; if the file is n characters in 

length, we may assume it is originally given as a binary file of size 3n bits, in which the 

letters E, T, …, D are represented by the eight bitstrings 000, 001, …, 111 respectively. 

We now show how to take advantage of the dominance of the letter ‘E’ to compress a 

large file with this character distribution, to a file of length about 2.8333n bits on average 

(6.6% shorter than the original file).  This compression is achieved using an encoding 

based on the following ‘tree’ or ‘trellis’: 
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The trellis is constructed as follows: We first list the eight characters on the left, in 

decreasing order of frequency from top to bottom.  A horizontal line extends to the right 

of each character, labeled by the corresponding frequency.  We check that these 

frequencies add up to 1.00.  We then join the bottom two characters, adding together their 

frequencies: 0.02 + 0.03 = 0.05.  Since this is no longer the lowest frequency in the list, it 

‘bubbles up’ above the lines corresponding to ‘R’ and ‘I’ (having frequencies 0.04 and 

0.04).  We now have only seven horizontal lines instead of eight, and the frequencies 

labeling these lines are again listed in decreasing order from top to bottom.  Again merge 

the bottom two lines to obtain a single line with combined frequency 0.04 + 0.04 = 0.08, 

and ‘bubble’ this up above the previous line to restore the decreasing order of 
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frequencies.  Repeat until all horizontal lines have merged to one line.  At each stage, 

moving from left to right, we check that the frequencies add up to 1.00; in particular the 

last horizontal line on the right is labeled by the total frequency 1.00. 

 

Every time two horizontal lines merge, moving from left to right, we label the upper 

branch ‘1’ and the lower branch ‘0’.  For each of the eight characters in turn, the path 

from left to right starting at that character passes through a sequence of 0’s and 1’s, and 

we reverse this string to obtain the Huffman codeword for that character.  This gives the 

following table of Huffman codewords for each of the eight characters: 

 

character 
Standard 

codeword 

Huffman 

codeword 

E 000 1 

T 001 011 

A 010 001 

S 011 000 

R 100 01011 

I 101 01010 

O 110 01001 

D 111 01000 

 

Thus for example, the message text ‘STEER’ would be encoded as the 13-bit string 

0000111101011 using Huffman encoding, compared with the 15-bit string 

011001000000100 using the standard encoding.  The encoding algorithm assigns shorter 

codewords to the more frequent characters, in order to reduce the average length of the 

encoded file.  This feature explains why a Huffman encoded file is usually shorter than 

the original. 

 

Decoding of the compressed text involves reading the trellis from right to left; each time 

is encountered, the next bit in the encoded text tells us which branch to follow.  For 

example to decode the compressed text ‘0000111101011’, start from the right side of the 

trellis and follow the branches labeled 0, 0, 0 to arrive at ‘S’.  Then start again from the 

right side of the trellis and follow the branches labeled 0, 1, 1 to arrive at ‘T’ on the left.  

Continue in this way until the original text ‘STEER’ is recovered. 

 

Note that Huffman encoding is only successful in the absence of bit errors.  For example 

if the compressed text ‘0000111101011’ is altered to ‘1000111101011’ as a result of only 

the first bit being switched, this will be misinterpreted as ‘ESEEEER’.  A single bit error 

results in multiple errors in the decoding process!  Even the length of the decoded 

message comes out wrong in this case. 

 

Note that the most frequent character ‘E’ is encoded as a single bit (fewer than the three 

bits required by the standard encoding), whereas the least frequent characters require 5 

bits each (more than the three bits required by the standard encoding).  The average 

number of bits required by a single character is 
 

0.50×1 + 0.15×3 + 0.12×3 + 0.10×3 + 0.04×5 + 0.04×5 + 0.03×5 + 0.02×5 = 2.26 bits, 
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compared with 3 bits per character used by the standard encoding.  Thus a typical binary 

file of length 3n bits will compress to a file about 2.26n bits long, on average.  Thus the 

compressed file is, on average, 2.26/3.00 = 75.3% as large as the original file.  As 

expected, in the worst case the “compressed” file will be longer than the original 

(possibly as long as 5n bits); but this happens only for files consisting of characters ‘R’, 

‘I’, ‘O’, ‘D’; and such files are quite rare, according to our table of frequencies.  Most 

files have lots of E’s, and these reduce the size of the compressed file considerably. 

 

Morse code uses a similar principle of assigning shorter codewords to the more frequent 

letters, as the following table shows: 

 

A . — H . . . . O — — — V . . . — 
B — . . . I . . P . — — . W . — — 
C — . — . J . — — — Q — — . — X — . . — 
D — . . K — . — R . — . Y — . — — 
E . L . — . . S . . . Z — — . . 
F . . — . M — — T —   
G — — . N — . U . . —   

 

 

Huffman Encoding:   Example 2 
 

In Example 1 we considered an encoding of text, one character at a time.  We now wish 

to demonstrate how a better compression ratio is typically achievable by encoding strings 

of characters.  For this example we will simplify our alphabet even further.  Let us now 

assume that the binary alphabet {0,1} is used, with twice as many 1’s as 0’s.  We also 

assume that bits are independent of each other.  That is, each position in the text is either 

0 or 1, and the bit ‘1’ occurs with probability 2/3, independently of the other bits in the 

text.  (Later we will see how the assumption that bits are independent, affects the 

encoding algorithm and the compression ratio. 

 

If characters (i.e. bits) are considered only one at a time as in Example 1, then no 

compression occurs: the “compressed” file is identical to the original, as we see from the 

following trellis and table of codewords: 
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The assumption that bits are independent random variables means that the bitstrings 00, 

01, 10 and 11 occur in the original file with frequencies 1/9, 2/9, 2/9 and 4/9 respectively.  

Therefore if we divide the original file into bitstrings of length 2, and apply Huffman 

encoding to each of these pairs of bits, we obtain the trellis and table of codewords: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case the average number of bits required to encode each pair of message bits is 
 

(1/9)×3 + (2/9)×3 + (2/9)×2 + (4/9)×1 =  17/9 bits. 
 

This algorithm will compress a file of n bits to a file of  (17/18) ×n = 0.9444n bits, on 

average.  For example the input string ‘10111011’ of length 8 will be compressed to the 

string ‘010010’ of length six.  Note that if the original file does not contain an even 

number of bits, then last bit must be treated differently than the previous bits; but this can 

be done without reducing the average compression ratio for large files. 

 

We can do even better by grouping message bits together three at a time.  This leads to 

the following trellis and table of codeword equivalents: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case every triple of input bits is encoded as 
 

Message 

string 

Huffman 

codeword 

00 110 

01 111 

10 01 

11 0 

Message 

string 

Huffman 

codeword 

000 0100 

001 0101 

010 0110 

011 100 

100 0111 

101 101 

110 00 

111 11 
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(1/27) ×4 + (2/27) ×4 + (2/27) ×4 + (2/27) ×4 + (4/27) ×3 + (4/27) ×3 + (4/27) ×2 + (8/27) ×2 
 

= 76/27 bits on average.  This will compress an input file of n bits to a file of (76/81) ×n 

= 0.9383n bits on average, a slight improvement over the compression rate available by 

considering the input bits two at a time. 

 

We can achieve even better compression rates if we are willing to group together the 

input bits 4 at a time, 5 at a time, etc.; but there is a limit to how much better we can do.  

This limit (for data containing random 0’s and 1’s with frequencies 1/3 and 2/3 

respectively, with bits in different positions independent of each other) means that an 

input file of n bits cannot be compressed to a file any smaller than about 0.9183n bits on 

average.  The value 0.9183 to which I refer here is actually H(1/3) where H(p) is the 

binary entropy function defined by 
 

H(p) = –p log
2
(p) – (1–p) log

2
(1–p) 

 

whose graph is shown here: 

 

 
 

The base 2 logarithm function appearing in this formula is defined as follows: we say that 

log
2
(N) = k is the value of k such that 2k = N.  The reason that base 2 is used in this 

context is that we are using two characters (0 and 1) to represent all information.  There 

are 2k different bitstrings of length k, so it is possible to send 2k different messages using 

bitstrings of length k.  Now suppose we are given a number N and a list of N different 

messages that we might want to send.  We want to encode each possible message as a 

bitstring of some length k.  How large must k be?  We must solve 2k = N for k.  For 

example, suppose we want to send one of the 16 possible hexadecimal digits 0, 1, 2, 3, 4, 

5, 6, 7, 8, 9, A, B, C, D, E, F encoded as a bitstring.  How long must each bitstring be?  In 
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this case k = log
2
(16) = 4 since 24 = 16.  Thus each hexadecimal digit can be encoded as a 

bitstring of length 4 (0=0000, 1=0001, …, F=1111). 

 

One interpretation of the function H(p) is as follows: consider a file consisting of n 

random bits (with bits in different positions independent of each other), with 0’s and 1’s 

occurring with frequency p and 1–p, respectively.  The smallest file to which we may 

compress this data will be a file of size about H(p)×n bits, on average.  Accordingly, we 

view the actual information content of an n-bit file as being H(p)×n bits. 

 

Let’s think carefully what this means in the special cases p = 0, 0.5, 1.  If p = 0 then the 

frequency of the bit ‘0’ is zero, so the input file consists of a long string of 1’s.  As 

mentioned earlier, such data is highly compressible; it carries essentially no information.  

This is what we expect from the graph, where we clearly see that H(p) goes to zero when 

p goes to zero.  The same reasoning applies when p = 1: in this case the bit ‘0’ occurs 

with frequency 1, so the input file consists of a long string of 0’s.  Once again the data is 

highly compressible; it carries essentially no information.  Again, the graph shows H(p) 

going to zero when p approaches 1.  The case p = 0.5 means that the data consists of 0’s 

and 1’s occurring in equal numbers.  This type of data has the most random appearance 

of all, and is incompressible.  From the graph we see that H(0.5) = 1, so for an input file 

of length n bits, the “compressed” file will also have H(0.5)×n = n bits. 

 

Notice that the graph of H(p) is symmetric about the line p = 0.5.  This means that H(1–p) 

= H(p).  We interpret this as saying that interchanging 0’s and 1’s in the data (i.e. 

replacing every 0 by 1, and every 1 by 0) does not change the actual information content 

of the data.  It does mean that 0’s and 1’s will occur with frequency 1–p and p 

(respectively), instead of p and 1–p as before.  But clearly the choice of two-letter 

alphabet is arbitrary: {0,1} is no better than {+,–} or {N,S} or {a,b} or {1,0}. 

 

The entropy function H(p) is also used in physics as a measure of randomness.  We 

highlight here the fact that information is measured in the same way as randomness.  

Evidently data with a high degree of pattern or repetition (i.e. very little randomness), 

being the most compressible, carries very little information.  Conversely, data with very 

little evidence of pattern or repetition (i.e. having the appearance of randomness), being 

the least compressible, carries a high degree of information.  It was Claude Shannon 

whose insight, during the 1940’s and 1950’s, led to the quantification of information in 

this way: the possibility of measuring information much as we measure temperature or 

volume or electrical current.  Of course we are not quantifying the subjective value of 

information: this measure will not distinguish between text from a Dr. Seuss book and a 

presidential State of the Union address, even though the former may contain much more 

information than the latter. 


