
 
 

Take-Home Test 2 

Due Thursday, December 6 
 

Instructions:  The following will be graded as a substitute for an in-class Test 2; but the instructions are the 
same as for regular semester homework.  You may consult other sources, or discuss with other students in the 
class; nevertheless the work that you submit must be your own, not copied. 

 

1. Let 𝐴 and 𝐵 be the points (−1,0) and (1,0) in the Euclidean plane.  Denote by 𝐴𝑃 and 𝐵𝑃 the 

distances from 𝑃 to the points 𝐴 and 𝐵 respectively.  Fix a positive real number 𝜆, and let 𝛾 be 

the curve consisting of all points P such that 𝐵𝑃

𝐴𝑃
= 𝜆. 

a. Find the equation of the curve 𝛾 in Cartesian coordinates (𝑥, 𝑦). 

b. In words, give a simple geometric description of 𝛾. 

c. Explain the relevance of this particular choice of curve 𝛾 in the context of our course, 

describing the relation of 𝛾 to the particular choice of points 𝐴 and 𝐵. 

 

In any inversive plane, if we fix a point 𝑁 (which we may think of as the north pole, although the 

choice of 𝑁 is arbitrary), it is not hard to see that the points other than 𝑁, together with the circles 

through 𝑁 (after removing 𝑁) always form an affine plane.  This fact follows directly from the 

axioms.  In the classical case of the real inversive plane, this observation can also be realized using 

stereographic projection through 𝑁 as described in class.  Given an affine plane, we can sometimes 

(although not always) reverse the process just described, in order to construct an inversive plane from 

an affine plane by the addition of one extra point (which we might call ∞) and with a judicious choice 

of circles.  We have seen how the real inversive plane can be found to arise in just such a manner.  The 

finite classical inversive planes provide further examples.  Before proceeding with examples, we 

derive formulas for counting points and circles in finite inversive planes. 

 

Given a finite inversive plane IP, and fixing an arbitrary choice of one of its points 𝑁, the remaining 

points and the circles through 𝑁 (after removing 𝑁) form a finite affine plane AP of order 𝑛, say.  This 

means that IP has exactly 𝑛2 + 1 points (including 𝑁); also 𝑁 lies on 𝑛2 + 𝑛 circles of IP; and every 

circle through 𝑁 has exactly 𝑛 + 1 points (including 𝑁).  Since these numbers are the same regardless 

of the point 𝑁 chosen, it must in fact be the case that 𝐈𝐏 has 𝑛2 + 1 points; every circle has 𝑛 + 1 

points; every point lies on 𝑛2 + 𝑛 circles; and every pair of distinct points has exactly 𝑛 + 1 points in 

common.  The total number of circles in IP must be 𝑛(𝑛2 + 1).  (For if 𝑚 is the total number of 

circles, there are (𝑛 + 1)𝑚 = (𝑛2 + 1)(𝑛2 + 𝑛) incident pairs (𝑃, 𝛾) where 𝛾 is a circle and 𝑃 is a 

point on 𝛾).  The two smallest cases 𝑛 = 2 and 𝑛 = 3 are described below. 

We may extend the affine plane of order 2 to form an inversive plane with exactly 5 points, in a 

fashion very reminiscent of the way a one-point extension of the Euclidean plane yields the real 

inversive plane.  Starting with the affine plane 

 

 

 

 



 

we add a new point called ∞ to every line; we also add four affine ‘circles’ to obtain altogether five 

points  𝐴, 𝐵, 𝐶, 𝐷, ∞  and ten circles 
 

𝐴𝐵𝐶, 𝐴𝐵𝐷, 𝐴𝐶𝐷, 𝐵𝐶𝐷, 𝐴𝐵∞, 𝐴𝐶∞, 𝐴𝐷∞, 𝐵𝐶∞, 𝐵𝐷∞, 𝐶𝐷∞. 
 

This is the smallest inversive plane, mentioned in class.  For your benefit, you should convince 

yourself that this does indeed satisfy the three axioms of inversive plane geometry.  There is nothing 

very deep here because it consists simply of all (
5
3

) = 10 triples on 5 points. 

 

Rather less trivial is the next-smallest inversive plane, constructed by extending the affine plane 

of order 3, by the addition of a new point called ∞, as outlined in Question 2 below. 

 

 

 

 

 

2. Begin with the affine plane of order 3 as 

shown on the right.  The original nine 

points 𝐴, 𝐵, … , 𝐼 are called the affine 

points. 

 

Complete the following blanks 

appropriately in order to extend the affine 

plane of order 3 to an inversive plane of 

order 3, using the axioms and the counting 

formulas above as necessary: 

 

 
 

There are two types of circles: extended affine lines (consisting of affine lines, with the new 

point ∞ added) and affine circles (consisting of affine points only, no ∞).  The total number of 

circles should be __________________________.  Each circle contains ______________ 

points, and every point lies in exactly ________________ circles.  Every pair of distinct points 

lies in exactly ___________________ circles. 

 

The number of circles formed by extending affine lines (by the addition of the new point ∞) is 

________________.  So the number of affine circles is _____________________ .  Any two 

of these circles meets in at most ______________ points. 

 

The number of ways to choose four affine points with no three collinear, is _______________ .  

(So these can’t all be circles of our inversive plane; we will have to choose a subset of these as 

our affine circles.) 

 

Assuming that 𝐴𝐵𝐷𝐸 is one of our affine circles, the others must be: 

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________ 



 

3. Miquel’s Theorem plays a role (in inversive plane geometry) analogous to the role of the 

theorems of Pappus and Desargues in affine and projective plane geometry.  In an inversive 

plane, we say that a quadruple of points 𝐴𝐵𝐶𝐷 is concyclic if the four points 𝐴, 𝐵, 𝐶, 𝐷 all lie 

on the same circle.  Now suppose we have eight distinct points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻 in an 

inversive plane; and consider the six quadruples of points 𝐴𝐵𝐶𝐷, 𝐴𝐵𝐸𝐹, 𝐵𝐶𝐹𝐺, 𝐶𝐷𝐺𝐻,
𝐴𝐷𝐸𝐻, 𝐸𝐹𝐺𝐻.  Miquel’s Theorem says that in the classical case (i.e. in an inversive plane 

coordinatized by a field), if at least five of these quadruples are concyclic, then so is the sixth 

quadruple.  The following converse holds: If Miquel’s condition holds for every set of eight 

distinct points in an inversive plane, then the plane must be classical (i.e. the plane must be 

coordinatized by a field). 

Miquel’s configuration may be visualized using our model of the real inversive plane 

based on a Euclidean sphere 𝑆.  Taking the eight points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻 to be the vertices 

of a cube inscribed in 𝑆, the six concyclic quadruples of vertices are those of the six faces of 

the inscribed cube.  By stereographic projection, this gives rise to a Miquel configuration in the 

‘flat’ model of the real inversive plane with point set ℝ2 ∪ {∞}. 

 

a. Using ample space on a full sheet of blank paper, provide a straightedge and compass 

construction demonstrating the validity of Miquel’s Theorem for a particular choice of 

eight distinct points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, all on your paper.  Label these eight points of 

the configuration.  (Of course this is not a proof of Miquel’s Theorem, nor are you 

asked to provide such a proof, only a construction illustrating the theorem in a 

particular case.) 
 

b. Using another sheet of paper, provide a straightedge and compass construction of 

another Miquel configuration such that 𝐴 is the point at infinity; and the seven points 

𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻 all lie on your page. 


