

Test 1—Thursday, October 18, 2017

Instructions: Answer all questions in the space provided. You are permitted to use one "cheat sheet" (one side of an $8\frac{1}{2}\times11$ in. sheet with your own handwriting only) and a calculator. Show complete work and use complete sentences when required. Total value of questions: 100 points.

Section A: True/False (3 points each)

- 1. Due to the work of Hilbert and other leading mathematicians of the 20th century, the mathematical problems of Euclidean geometry are now solved, or at least algorithmically solvable using computers. ______(*True/False*)
- 2. Given any projective plane, if one removes a quadrilateral, what remains is an affine plane. (*True/False*)
- 3. The axioms of plane geometry as taught in high school today are found in the writings of Euclid. _____(*True/False*)
- 4. Every projective plane contains a set of four lines, no three of which are concurrent.
- 5. In affine *n*-space F^n over an arbitrary field *F*, where $n \ge 2$, any three points lie on at least one plane. (*True/False*)
- 6. The one- and two-dimensional subspaces of \mathbb{R}^3 form the points and lines of a projective plane. (*True/False*)
- 7. In affine plane geometry, a line segment is defined as the shortest path between two points. *(True/False)*
- 8. In affine plane geometry, every point is incident with at least three lines.

___ (True/False)

(True/False)

- 9. In the axiomatic approach to plane geometry, the term '*line*' is defined as an algebraic curve of degree one. (*True/False*)
- 10. In the game *SpotIt*[®], cards and symbols represent points and conics of an affine plane. ______(*True/False*)

Section B: Classical Plane Geometry

Instructions: In #11, fill in each of the blanks below using the *best* word selected from the following list. You may use a word more than once, or not at all.

plane	triangle	axioms	conic	point	distance	classical
quadrilateral	concurrent	algebra	polarity	line	angle	affine
Pappus	collinear	parallel	infinity	determinant	order	projective

11. (32 points) The classical theorem of ______ holds in the Euclidean plane only if one is careful to state the exceptional cases that arise due to the possibility of ______ lines. If one adds a point at ______ to every ______ class of lines in the Euclidean plane, then joins all the new points with a single new ______, one obtains a classical ______ plane. In this new plane, the classical theorem of ______ holds without exception because no two lines are ______.

The Euclidean plane is an example of a classical _____ plane; but because it is coordinatized by the real numbers, it admits several features not found in a more general _____ plane. Examples of these properties include _____ between two points; the _____ of points on a line; and the _____ between two intersecting lines. In the Euclidean plane, a _____ has the property that no three of its points are

_____. This property can be proved, not directly from the axioms, but rather using _____.

12. (*16 points*) The figure on the right depicts a configuration of points and lines in the real projective plane. Determine the coordinates of the points *P*, *Q*, *R* and verify their collinearity.

13. (12 points) Consider the following statement, valid theorem in the theory of projective planes:

Theorem. Suppose a plane has the following property: Given any four points A, B, C, D, no three of which are collinear, then the points $P = AB \cap CD$, $Q = AC \cap BD$ and $R = AD \cap BC$ are collinear. Then the plane is classical.

State the dual of this theorem, which is also a valid theorem. (Do not supply any proof.)

Section C: Fractals

14. (10 points) The Sierpinski Triangle S is the limit of the following infinite sequence of plane regions, each having area $\frac{3}{4}$ times the area of the previous region in the sequence. Determine the Hausdorff dimension of S.

