

Solutions to Take-Home Test 2

1. (a) The point P(x, y) lies on the curve γ iff

 $0 = BP^2 - \lambda^2 AP^2 = (x-1)^2 + y^2 - \lambda^2 [(x+1)^2 + y^2].$

If $\lambda = 1$, this simplifies to x = 0 (the y-axis); whereas if $\lambda \neq 1$, we complete the squares to rewrite this as $(x - a)^2 + y^2 = r^2$

where $r = \frac{2\lambda}{|1-\lambda^2|}$ and $a = \frac{1+\lambda^2}{1-\lambda^2}$

(b) If $\lambda \neq 1$, γ is the Euclidean circle centered at C(a, 0) with radius r (where a and r are given above). If $\lambda = 1$, then γ is a line (the *y*-axis).

(c) In either case, γ is a circle in the real inversive plane, inverting $A \leftrightarrow B$. As λ varies over all positive real numbers, γ varies over all such circles. For $\lambda \neq 1$, we note that

$$AC \cdot BC = |a + 1| \cdot |a - 1| = |a^2 - 1| = r^2$$

which shows that γ does indeed invert $A \leftrightarrow B$. For $\lambda = 1$, γ is the y-axis, which inverts (i.e. reflects) $A \leftrightarrow B$. In the limit as $\lambda \to 1$, note that γ has radius $r \to \infty$; also its center $C \to \infty$.

2. There are two types of circles: extended affine lines (consisting of affine lines, with the new point ∞ added) and affine circles (consisting of affine points only, no ∞). The total number of circles should be $\underline{n(n^2 + 1)} = \underline{30}$. Each circle contains $\underline{n + 1} = \underline{4}$ points, and every point lies in exactly $\underline{n(n + 1)} = \underline{12}$ circles. Every pair of points lies in exactly $\underline{n + 1} = \underline{4}$ circles.

The number of circles formed by extending affine lines (by the addition of the new point ∞) is <u>12</u>. So the number of affine circles is <u>30 - 12 = 18</u>. Any two of these circles meets in at most <u>2</u> points.

The number of ways to choose four affine points with no three collinear, is (9 * 8 * 6 * 3)/(4 * 3 * 2 * 1) = 54. (So these can't all be circles of our inversive plane; we will have to choose a subset of these as our affine circles.)

Assuming that *ABDE* is one of our affine circles, the others must be:

ABGH	ABFI	ACDF	ACEH	ACGI	ADHI
AEFG	<mark>BCDG</mark>	<mark>BCEF</mark>	<mark>BCHI</mark>	<mark>BDFH</mark>	<mark>BEGI</mark>
CDEI	<mark>CFGH</mark>	<mark>DEGH</mark>	<mark>DFGI</mark>	<mark>EFHI</mark>	

3. Typical examples of configurations in (a) and (b) appear on the following page.

