
 
 

Solutions to SAMPLE Final Exam 
 

1. (10 points)  Let 𝑃 and 𝑄 be the two points of intersection of 𝛼 and 𝛼′.  Perform an inversion in a 

circle 𝛿 centered at 𝑃.  This maps 𝛼 and 𝛼′ to circles 𝛽 and 𝛽′ passing through 𝑃’ = ∞ and 𝑄’ as 

shown.  Thus 𝛽 and 𝛽′ are ordinary lines passing through 𝑄’, the inverse of 𝑄 in 𝛿.  Now there are 

two lines (shown here in red) through 𝑄’ which reflect 𝛽 to 𝛽′; these two red lines are the bisectors 

of the angles at 𝑄’ formed by 𝛽 and 𝛽′.  Invert again in 𝛿 to obtain two possible choices (shown 

again in red) for a circle inverting 𝛼 to 𝛼′. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. a. This curve has degree 3. 

 

b. By Bezout’s Theorem, the curve has at most 3 collinear points.  (Alternatively, to find 

intersection points of the curve, requires simultaneously solving two polynomial equations, one of 

degree 3 and one of degree 1.  Use the second equation to write 𝑦 = 𝑚𝑥 + 𝑏; then substitute into 

the first equation to obtain a polynomial equation for 𝑥 of degree 3.  This has at most 3 real roots, 

so there are at most three points of intersection.) 
 

 

3. The unique conic in the real projective plane passing through the five points  (1,0,0), (0,1,0),
(0,0,1), (1, −1,1), (1,2,4) has equation 2𝑥𝑦 + 𝑥𝑧 − 𝑦𝑧 = 0.  To obtain this equation, first consider 

an arbitrary conic 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 𝑑𝑥𝑦 + 𝑒𝑥𝑧 + 𝑓𝑦𝑧 = 0 where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 are real 

constants, not all zero.  Assuming that the five points given all lie on this conic, we obtain five 

linear equations in the six unknowns; and solving this system gives the equation 2𝑥𝑦 + 𝑥𝑧 − 𝑦𝑧 =
0 up to a scalar multiple. 

 

 

4. (a) In the Euclidean plane, given a point 𝑃 not on a line ℓ, there is a unique line through 𝑃 not 

meeting ℓ.  In the hyperbolic plane, there are instead infinitely many lines through such a point 𝑃 

not meeting the line ℓ. 

Also in the Euclidean plane, every triangle has angle sum equal to 𝜋 = 180°; in the hyperbolic 

plane, every triangle has angle sum less than 𝜋 = 180°. 
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Furthermore, in the Euclidean plane, a circular disk of radius 𝑟 has area 𝜋𝑟2; in the hyperbolic 

plane, such a disk has area greater than 𝜋𝑟2. 
 

(b) Unlike the Euclidean plane, large triangles in physical space have angle sum different from 

180°; but the actual angle sum in any particular triangle depends not only on the side lengths of the 

triangle—it also depends on the position of the triangle relative to nearby masses, which affect the 

angle sum. 

In fact, distances between points in physical space cannot be absolutely measured without 

agreeing on synchronicity of events.  This again differs from distances in the Euclidean plane, 

which are well-defined and time-independent. 

There are also differences which only become evident on the very small scale, smaller than our 

usual practical range of measurement.  In the Euclidean plane, given any three distinct collinear 

points, one of the points is between the other two.  This well-defined relation of order of points on 

a line, fails for physical space; and the failure becomes evident at very small distances—in fact at 

very small distance scales, distance no longer has physical meaning.  This statement does not refer 

to the lack of precision intrinsic in our tools of measurement; rather, it is a feature of space (or 

rather spacetime) itself. 

 

(c) The hyperbolic plane is uniform (i.e. homogeneous) in a way that physical space is not.  For 

example, in the hyperbolic plane, any two triangles with given side lengths 𝑎, 𝑏, 𝑐 must have the 

same angles.  As described in (b), this is not true for physical space, where the angle defect of a 

triangle depends on the distribution of nearby mass. 
 

 

5. A projective plane has points, lines and incidence satisfying three axioms: 

(P1) Any two distinct points lie on a unique line. 

(P2) Any two distinct lines meet in a unique point. 

(P3) There exists a set of four points, no three of which are collinear. 

Every projective plane satisfies also the dual of the third axiom, namely: There exists a set of four 

lines, no three of which are concurrent.  To prove this, let 𝐴, 𝐵, 𝐶, 𝐷 be a set of four points, no three 

of which are collinear; so the six lines 𝑎 = 𝐴𝐵, 𝑎′ = 𝐶𝐷, 𝑏 = 𝐵𝐶, 𝑏′ = 𝐴𝐷, 𝑐 = 𝐴𝐶, 𝑐′ = 𝐵𝐷 are 

distinct.  Now it is easy to check that no three of the lines 𝑎, 𝑎’, 𝑏, 𝑏’ are concurrent.  (For example, 

the point 𝑎 ∩ 𝑏 = {𝐵} does not lie on 𝑎’ = 𝐶𝐷, otherwise the points 𝐵, 𝐶, 𝐷 would be collinear.  

The other cases are similar.) 

 

6. Given an affine plane (with affine points and affine lines) we obtain a projective plane as follows: 

We first add new points, one for each parallel class of affine lines: all affine lines in each parallel 

class are extended by the addition of the corresponding new point.  Next, we join all these new 

points (which we call ‘points at infinity’) by adding a new line (called ‘the line at infinity’) which 

passes through all the points at infinity. 

Projective plane geometry is more natural in several respects: The axioms of projective plane 

geometry are simpler than those of affine plane geometry.  For this reason, elementary theorems of 

projective plane geometry are typically easier to prove than the corresponding theorems of affine 

plane geometry, where care must be taken to accommodate special cases in which lines fail to 

intersect.  Typically one theorem in projective geometry, translates into a large number of 

theorems in affine plane geometry, due to the large number of cases arising in the affine case due 

to parallel lines.  Moreover, the principle of duality (valid in the projective plane, but not in the 

affine plane) means that many theorems in affine plane geometry exist in two forms, one the dual 

of the other; and in the projective setting, one simpler theorem suffices to cover both cases.  

Bezout’s Theorem (counting points of intersection of algebraic curves of degree 𝑚 and 𝑛) provides 



a particularly elegant context in which the projective description (𝑚𝑛 points of intersection) is 

simpler: the weakness of affine version (at most 𝑚𝑛 points of intersection) shows that without the 

‘points at infinity’, the picture is incomplete. 

 

7. Finite affine planes arise in the design of statistical experiments.  We gave a hypothetical example 

of such an experiment, based on the affine plane of order 3. 
 

The finite projective plane of order 2 is used in the construction of the octonions, an 8-dimensional 

number system used in theoretical physics. 
 

Other applications have been mentioned briefly: the use of finite geometries in the construction of 

dense sphere-packings in ℝ𝑛 (which leads to the construction of good error-correcting codes); and 

elliptic curves in finite projective planes (cubic curves with an addition law as in HW3) are used in 

public key cryptography, primality testing and integer factorization; and in pseudorandom number 

generators. 
 

 

8. 
 

Comments in #8: 
 

a. A pair of great circles on a sphere is an example of geodesics meeting at two points. 

 
 

b. The angle sum of a 30°-45°-90° triangle is 165° < 180°, so such a triangle exists in the hyperbolic 

plane.  Moreover such a triangle tiles the plane by taking 12, 8 or 4 triangles meeting at each 

vertex. 

 
 

c. In a dual inversive plane, any three distinct circles would have a unique point in common.  This 

cannot occur in an inversive plane, where two circles can already be disjoint. 

 
 

d. The real affine plane ℝ2 satisfies the axioms for Euclidean plane geometry. 

 

e. Each inversion reverses orientation in the inversive plane.  So a composite of two inversions yields 

a transformation that preserves orientation; and this cannot itself be an inversion. 

 
 

f. Any line in the real projective plane is topologically equivalent (i.e. homeomorphic) to a circle.  

Given three distinct points 𝐴, 𝐵, 𝐶 on a circle, none of the three points is distinguished from the 

other two as lying ‘in between’. 

 

g. In the hyperbolic plane, an 𝑛-gon has area greater than 100 if 𝑛 is large enough.  (We would need 

𝑛 ≥ 34 since an 𝑛-gon is decomposable into 𝑛 − 2 triangles with angle sum less than (𝑛 − 2)𝜋.) 

 
 

 

h. This is a famous unsolved problem. 

 
 
 

i. Stereographic projection distorts distances but preserves angles. 

 
 

 

j. The real inversive plane can be modeled using the points of an ordinary sphere (i.e. the unit sphere 

in ℝ3), which is orientable. 
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