
 
 

Solutions to the SAMPLE Test 
 

 

Section A:  True/False 
 

1. F 2. T 3. T 4. F 5. T 6. F 7. T 8. F 9. F 10. F 

 

Section B 
 

11. (20 points)  Match each plane object on the left with its point-line dual on the right.  The first one 

is done for you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12. Scaling by a factor of 𝑐 = 0.1 gives 𝑐𝐴, the set of all real numbers in [0,0.2] whose decimal digits 

are even.  And the original set 𝐴 is a disjoint union of five shifted copies of this: 𝑐𝐴, 𝑐𝐴 + 0.2, 

𝑐𝐴 + 0.4, 𝑐𝐴 + 0.6 and 𝑐𝐴 + 0.8.  So 𝐴 has Hausdorff dimension 𝑑 satisfying 10𝑑 = 𝑐𝑑 = 5, i.e. 

𝑑 = 𝑙𝑛 5  

𝑙𝑛 10 
≈ 0.69897.  Note that 0 < 𝑑 < 1 as expected. 

 

13. Projective plane geometry allows for duality, since the dual of a projective plane is again a 

projective plane (whereas the dual of an affine plane is not an affine plane).  Typically one 

theorem in projective plane geometry represents many theorems in affine plane geometry.  In 

the affine plane setting, theorems are often stated with exceptional cases to allow for lines that 

do not meet; moreover, in the affine setting, the lack of duality typically requires care in 

formulating the dual theorem.  Similarly, in the projective setting the proofs themselves are 

simplified since one typically has fewer cases to consider.  Projective plane geometry also 

simplifies the description of conics: over the real field or a finite field, there is projectively just 

one conic up to linear change of coordinates, unlike in the affine setting where ellipses, 

parabolas and hyperbolas must all be considered separately. 

 

 

 

 

14.  (a) This is the Theorem of Pappus.  Although the 

figure has been drawn differently from what 

appears here, it is really the same as the figure 

shown on the right. 

 

(b) 𝐻 is (2,6);  𝐼 is (0,2).  Lines have equations as 

follows: 

 

 

 

 

 

15. Take as lines the exponential curves 𝑦 = 𝑐𝑒𝑘𝑥 where 𝑐, 𝑘 ∈ ℝ; together with vertical lines of the 

form 𝑥 = 𝑎 where 𝑎 ∈ ℝ.  This makes the upper half-plane 𝑦 > 0 into an affine plane.  The 

axioms are easily checked directly.  But even this should be obvious since what we have 

constructed is isomorphic to the classical real affine plane (i.e. the Euclidean plane).  Indeed, the 

map (𝑥, 𝑦) ↦ (𝑥, 𝑒𝑦) is an isomorphism from the classical real affine plane ℝ2 to the plane that we 

have just constructed. 

 

 
In Section A you were not expected to provide explanation; however, I attach some comments below 

for your benefit. 
 

1. Many statements (such as the Theorem of Pappus, or the statement that some line has exactly 

three points) cannot be either proved or disproved from the axioms—there are planes where 

they hold, and there are planes where they fail. 

2. The projective plane of order 2 exists.  No contradiction can be derived from the axioms, 

otherwise no projective planes (in particular the plane of order 2) would exist.  One can also 

substitute the real projective plane in place of the plane of order 2 here, supplying a proof of 

relative consistency (i.e. assuming the real number system exists and satisfies the axioms for a 

𝐴𝐵𝐶 is 𝑦 = 𝑥 𝐴𝐹𝐻 is 𝑥 = 2 𝐶𝐷𝐻 is 𝑦 = 3𝑥 

𝐷𝐸𝐹 is 𝑦 = 4𝑥 + 4 𝐵𝐷𝐺 is 𝑥 = 3 𝐶𝐸𝐼 is 𝑥 = 0 

𝐴𝐸𝐺 is 𝑦 = 1 − 𝑥 𝐵𝐹𝐼 is 𝑦 = 5𝑥 + 2 𝐺𝐻𝐼 is 𝑦 = 2𝑥 + 2 

 



field, then so does the real projective plane); the advantage of using the plane of order 2, 

however, is that with only a finite number of points and lines, it is much easier to verify that it 

satisfies the axioms. 

3. The Euclidean plane is in fact the classical affine plane coordinatized by the field of real 

numbers. 

4. This statement misses the mark on many levels.  First of all, the Euclidean plane is only one of 

many possible planes; its significance is due largely to tradition.  It does not represent the true 

geometry of planes in our physical universe; it is merely a good approximation for many 

practical purposes.  Finally, Euclid’s axioms for this plane are somewhat lacking in precision, 

and have been replaced by modern sets of axioms. 

5. As discussed in class and the handouts.  In any case this is not hard to prove directly from the 

axioms. 

6. This cannot be true, because there are nonclassical affine planes where the Theorem of Pappus 

fails.  The smallest such nonclassical plane has order 9. 

7. Recall that the Euclidean plane is itself an affine plane. 

8. The axioms of plane geometry treat a ‘point’ as an undefined concept.  It is only when defining 

a particular model (i.e. ‘example’) of the axioms that we provide an interpretation of ‘point’, 

‘line’ and ‘incidence’. 

9. The notion of perpendicularity (or more generally, of angle) is not a relevant notion for affine 

planes in general. 

10. As emphasized in class (and on the first handout), Euclidean plane geometry harbors questions 

that are as difficult as any to be found in modern mathematics.  This includes unsolved and 

unsolvable problems, as well as problems of a computational nature that are provably 

uncomputable (i.e. for which it is known that no algorithmic solution exists). 


