
 
 

Solutions to Optional Retake of Test 1 
 

 

Section A:  True/False 
 

1. F 2. T 3. T 4. F 5. T 6. T 7. F 8. F 9. F 10. T 

 
 

In Section A you were not expected to provide explanation; however, here are some comments for your 

benefit. 

 

1. The set ℝ ∪ {∞} is not a field.  If it were, then 1 + ∞ ∈ ℝ ∪ {∞}.  Clearly 1 + ∞ ∉ ℝ, otherwise 

∞ = (1 + ∞) − 1 ∈ ℝ; but 1 + ∞ ≠ ∞, otherwise 1 = ∞ − ∞ = 0.  This is a contradiction. 

2. This is a very standard fact derivable from the axioms. 

3. Also a standard fact. 

4. Physical planes are non-Euclidean; and over larger distances, and in the vicinity of large masses 

(such as stars) the non-Euclidean properties of space become measurable.  For example, the angle 

sum of a triangle is not equal to 2𝜋. 

5. If 𝑛 ≥ 3 then three collinear points lie on more than one plane; whereas if 𝑛 = 2 or three given 

points are not collinear, they lie in a unique plane.  Recall our discussion and demonstration of this 

fact for 𝐹 = 𝔽3 and 𝑛 = 2,3,4 using the deck of Set® cards: there we took three cards not forming 

a ‘set’ (i.e. not collinear, and thus rather forming a triangle) and found the unique plane containing 

that triple of cards. 

6. This is the usual construction of the classical projective plane over the field 𝐹. 

7. In the axiomatic approach to affine plane geometry, the term ‘point’ is undefined.  The poetic 

expression ‘that which has position but no size’ is imprecise and ambiguous. 

8. There are many finite affine planes (in fact infinitely many such examples). 

9. In the axioms for plane geometry, ‘point’ and ‘line’ are undefined terms; and algebraic curves 

cannot be defined unless the plane is classical (i.e. coordinatized by a field). 

10. In the card game Set®, cards and sets represent points and lines of the classical affine 4-

dimensional space over 𝔽3. 

 

Sections B and C 
 

11. The classical theorem of  Pappus  holds in a projective plane if and only if the plane is classical, 

meaning that it is coordinatized by a  field .  The proof of theorem is a somewhat involved exercise 

using  algebra .  The theorem makes no reference to the  order  of points on a line; nor does it 

require the notions of  distance  or  angle  which are featured prominently in Euclidean plane 

geometry. 
 

We define a  quadrangle  to be a configuration of four  points , no three of which are 

collinear .  In the case of  affine  planes and  projective  planes, the existence of such a 

configuration is required by the  axioms , in order to exclude degenerate examples.  Also for such 

planes, any three distinct points are either  collinear  or they determine a unique triangle . 

 



 

12. 𝐴𝐵 is (
1
0

−1
);  𝐴𝐶 is (

1
0
0

);  𝐵𝐶 is (
1

−1
0

);  𝐴′𝐵′ is (
3

−1
−5

);  𝐴′𝐶′ is (
6

−2
−3

);  𝐵′𝐶′ is (
2

−3
−1

); 

       𝑃 is (1, −2,1);  𝑄 is (0,3, −2);  𝑅 is (1,1, −1).  We see that 𝑃, 𝑄, 𝑅 all lie on the line ℓ given 

       by (
1
2
3

). 

 

13. Sketch of original theorem:   

 

 

 

 

 

 

 

 

 

 

 

 

 

The dual may be stated as follows:  Let 𝑎, 𝑏, 𝑐 be lines tangent to an irreducible conic 𝛾 at distinct 

points 𝐴, 𝐵, 𝐶 respectively.  Then the three points 𝐴′ = 𝑎 ∩ 𝐵𝐶,  𝐵′ = 𝑏 ∩ 𝐴𝐶  and  𝐶′ = 𝑐 ∩ 𝐴𝐵  

are collinear. 

 

According to this particular choice of labels, the 

duality renames points and lines of the original 

theorem as 𝐴 ↔ 𝑎,  𝐵 ↔ 𝑏,  𝐶 ↔ 𝑐.  Moreover the 

old points 𝐴′, 𝐵′, 𝐶′ correspond to the new lines 

𝐵𝐶, 𝐴𝐶, 𝐴𝐵 respectively; whereas the new points 

𝐴′, 𝐵′, 𝐶′ correspond to the old lines 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′ 
respectively.  This is not the only possible naming 

convention; in fact we might have chosen to retain 

all the old labels in the new picture.  But for once I 

have been more conventional in sticking to lower 

case labels for lines, and upper case labels for points.  

Although you were not asked to sketch the new 

theorem (the dual of the original statement), I have 

done so here (as on the right) for your benefit.  

 

 

14. Scaling 𝐶 by a factor of 3 in every direction gives a 

figure which is partitioned into five copies 

(distinguished by different colors in the figure shown 

on the right) of the original curve 𝐶.  Thus 𝐶 has 

Hausdorff dimension 𝑑 satisfying 3𝑑 = 5, i.e. 𝑑 =
log3 5 = ln 5

ln 3
≈ 1.46497.  Note that 1 < 𝑑 < 2 as 

expected for a fractal curve in the plane. 


