
 
 

Solutions to Final Exam 

 

1. (a) No such circles can occur because any circle tangent to 

both 𝛼1 and 𝛼3 would have to cross 𝛼2 twice, as do any of 

the red circles shown on the right; so it could not be tangent 

to 𝛼2. 

 

Recall that in our analysis of Steiner chains of circles, we 

described a similar setting, in which the circles 𝛼1 and 𝛼3 

were transformed to a pair of concentric circles, so that the 

red circles are permuted by rotational symmetry about the 

common center. 

 

 
 

(b) There are four such 

circles, as shown (in four 

randomly chosen colors). 

 

 

 

 

 

 

 

 

 

 

 

 

2. The conic has equation  𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 𝑑𝑥𝑦 + 𝑒𝑥𝑧 + 𝑓𝑦𝑧 = 0, where the constant 

coefficients  𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ ℝ  are to be determined by the five known points, giving five linear 

equations  𝑎 = 𝑏 = 𝑐 = 4𝑎 + 4𝑏 + 𝑐 + 4𝑑 − 2𝑒 − 2𝑓 = 4𝑎 + 𝑏 + 4𝑐 − 2𝑑 + 4𝑒 − 2𝑓 = 0  in 

six unknowns.  Up to scalar multiple 𝜆, the solution (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) = 𝜆(0,0,0,1,1,1)  is unique.  

This uniquely determines the conic as  𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 = 0. 

The problem is 

conceptually 

simplified if we first 

perform an inversion 

in any circle centered 

at either of the two 

points of 𝛼1 ∩ 𝛼2, 

thereby transforming 

𝛼1 and 𝛼2 into 

circles of infinite 

radius. 

 



 

3. a.                                                                                            b. 

 

 

 

 

 

 

 

 

 

 

 

 

4. a.  Since the sphere has positive curvature, we expect the angle sum of each triangle to exceed 𝜋 =
180°. 

 

b.  The angle sum of each triangle is 𝜋

3
+ 𝜋

3
+ 𝜋

2
= 7𝜋

6
.  One reads off the angles from the picture 

using the fact that all triangles are congruent, and they meet either 4 at a vertex or 6 at a vertex, 

with the angle sum at each vertex being 2𝜋. 

 

c.  The area of each triangle equals its angular excess 7𝜋

6
− 𝜋 = 𝜋

6
. 

 

d.  Since the sphere has total area 4𝜋, and each triangle has area 𝜋

6
 , the number of triangles is 

4𝜋 𝜋
6

⁄ = 24. 

 

5. Four classical types of plane geometry (affine, projective, hyperbolic and inversive) may be 

described either axiomatically, or constructed using coordinates taken from the fieldf real 

numbers for the relevant objects (points, lines, circles, etc.).  For example, the Euclidean plane is 

the classical affine plane constructed using coordinates in ℝ.  Historically, the Euclidean plane 

was viewed as the single correct or true plane geometry.  We now recognize, however, that no one 

mathematical description perfectly captures the nature of physical reality.  Moreover, all these 

plane geometries are relatively consistent (in the sense that no contradiction can possibly arise 

from studying one of them, unless a contradiction also arises from studying the others). 
 

 For example, based on the Euclidean plane with point set ℝ2, one may add a single point 

denoted by ∞ to obtain a representation of the inversive plane.  Likewise, within the inversive 

plane, starting with an arbitrary choice of circle 𝛾 and taking circles orthogonal to 𝛾, one 

constructs a copy of the hyperbolic plane.  Or starting with the Euclidean plane, one may extend 

to the real projective plane by adding a set of new points, one for each parallel class of lines; then 

also joining up the new points using one new line.  If there is a contradiction to be found in any 

one of these four geometries, the same logical contradiction would necessarily propagate to each of 

the other geometries.  This argument is used to show relative consistency in the sense described 

above. 

 

6. Each kite-shaped quadrilateral has angles 60°, 90°, 90°, 90° for an angle sum 𝜋

3
+ 𝜋

2
+ 𝜋

2
+ 𝜋

2
= 11𝜋

6
.  

Its area (the same as the area of each fish) equals the angular defect 2𝜋 − 11𝜋

6
= 𝜋

6
 . 

 



7. Given any two distinct points 𝑃 and 𝑄, there are exactly  𝑛 + 1  circles passing through both 𝑃 and 

𝑄.  (If 𝑚 is the number of circles passing through both 𝑃 and 𝑄 then we consider the pairs (𝑅, 𝛾) 

where 𝛾 is a circle passing through 𝑃 and 𝑄, and 𝑅 is another point on 𝛾.  Counting in two 

different ways, the number of such pairs is 𝑛2 − 1 = (𝑛 − 1)𝑚.  We solve this to obtain 𝑚 = 𝑛 +
1.) 

 

If 𝑃 is any point on a circle 𝛾, then there are exactly  𝑛 − 1  circles tangent to 𝛾 at 𝑃.  (Let 𝑚 be 

the number of circles tangent to 𝛾 at 𝑃.  Count in two different ways the number of pairs (𝑄, 𝛿) 

where 𝑄 is a point not on 𝛾 and 𝛿 is a circle through 𝑃 and 𝑄 tangent to 𝛾.  This gives 𝑛𝑚 = 𝑛2 −
𝑛.  Solve to obtain 𝑚 = 𝑛 − 1.) 

 

If 𝑃 is any point not on a circle 𝛾, then there are exactly  𝑛 + 1  circles through 𝑃 tangent to 𝛾.  

(There are 𝑛 + 1 choices of point 𝑄 on 𝛾; and for each 𝑄, there is a unique circle through 𝑃 

tangent to 𝛾 at 𝑃.) 

 

Given any circle 𝛾, the number of circles 𝛼 such that |𝛼 ∩ 𝛾| = 2 is  1

2
𝑛2(𝑛 + 1) .   (There are 

(𝑛+1
2

) = 1

2
𝑛(𝑛 + 1) pairs of distinct points 𝑃, 𝑄 on 𝛾.  Each such pair gives 𝑛 choices of 𝛼.) 

 

Given any circle 𝛾, the number of circles 𝛼 such that |𝛼 ∩ 𝛾| = 1 is  𝑛2 − 1 .  (There are 𝑛 + 1 

choices of point 𝑃 on 𝛾; and for each 𝑃 there are 𝑛 − 1 circles tangent to 𝛾 at 𝑃.) 

 

Given any circle 𝛾, the number of circles 𝛼 such that |𝛼 ∩ 𝛾| = 0 is  1

2
𝑛(𝑛 − 1)(𝑛 − 2) .  (There 

are 𝑛3 + 𝑛 − 1 circles distinct from 𝛾.  Excluding those which meet 𝛾 in 1 or 2 points gives 𝑛3 +
𝑛 − 1 − 1

2
𝑛2(𝑛 + 1) − (𝑛2 − 1) = 1

2
𝑛(𝑛 − 1)(𝑛 − 2).)   

 

8. 

 

Comments in #8: 
 

a. As described in class. 

 

b. From the beginning of the semester, and as stated in the first handout, there is no algorithm which 

decides, given an arbitrary set of polygonal plane tiles, whether or not the Euclidean plane can be 

tiled using tiles of the given shape.  (The problem is not just that no such algorithm is known.  

Rather, it is known that no such algorithm exists.) 

 

c. A polarity maps points to lines and vice versa; it does not map points to points. 

 

d. For general 𝑛, it is not known how many balls can be made to touch a given ball of the same size.  

This number is 2,6,12 for 𝑛 = 1,2,3; so the formula 3 × 2𝑛−1 is correct for 𝑛 = 2,3 and incorrect 

for 𝑛 = 1.  Also for 𝑛 = 8 the maximum number of balls touching a given ball is 240, somewhat 

fewer than 384 as predicted by the formula. 

 

e. This property of Hausdorff dimension was pointed out in class (and used to check our 

computations in specific cases.) 

 
 

f. The angle sum of a 30°-45°-90° triangle is 165° < 180°, so no such triangle exists in the 

Euclidean plane. 
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g. The 1980’s computer result of Clement Lam et. al. stated that no projective plane of order 10 

exists.  This implies that no affine or inversive plane of order 10 exists (since an inversive plane of 

order 10 would give rise to an affine plane of order 10; and an affine plane of order 10 would give 

rise to a projective plane of order 10). 

 
 

h. This was described in class, with reference to p.362 of the book of Penrose. 

 

i. Any line in the hyperbolic plane is topologically equivalent (i.e. homeomorphic) to a line in the 

Euclidean plane.  ‘Betweenness’ for collinear points in the hyperbolic planes, is clearly seen from 

the Poincaré model, where lines are represented by arcs of circles. 

 

j. Very small regular pentagons in the hyperbolic plane have angles only slightly less than 108°.  By 

increasing the size of a pentagon, its angles decrease continuously, approaching 0° in the limit as 

the vertices tend to infinity.  Any angle between 0° and 108° is realized at the vertices of some 

regular pentagon. 


