

Optional Retake of Test 1—Thursday, November 8, 2018

Instructions: Answer all questions in the space provided. You are permitted to use one "cheat sheet" (one side of an $8\frac{1}{2}\times11$ in. sheet with your own handwriting only) and a calculator. Show complete work and use complete sentences when required. Total value of questions: 100 points.

Section A: True/False (3 points each)

1. The number system ℝ ∪ {∞}, consisting of the real numbers together with a single extra quantity called 'infinity', is a field which can be used to coordinatize the Euclidean plane.

_____(True/False)

2. Given any projective plane, if one removes a line together with its points, what remains is necessarily an affine plane. (*True/False*)

3. The Euclidean plane is an example of an affine plane. (*True/False*)

- 4. Given any three stars in the physical universe, there is a unique Euclidean plane containing their centers. (*True/False*)
- 5. In affine *n*-space F^n over an arbitrary field *F*, where $n \ge 2$, any three points lie on at least one plane. (*True/False*)
- 6. If *F* is any field, then the one- and two-dimensional subspaces of the three-dimensional vector space F^3 form the points and lines of a projective plane. (*True/False*)
- 7. In affine plane geometry, we define a point as 'that which has position but no size'. *(True/False)*
- 8. In affine plane geometry, every point is necessarily incident with an infinite number of lines. _____(*True/False*)
- 9. In the axiomatic approach to plane geometry, the term '*line*' is defined as an algebraic curve of degree one. (*True/False*)
- 10. In the game Set[®], cards and sets represent points and lines of an affine space.

_____(True/False)

Section B: Classical Plane Geometry

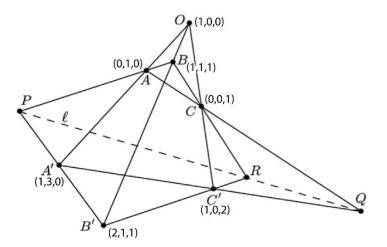
Instructions: In #11, fill in each of the blanks below using the *best* word selected from the following list. You may use a word more than once, or not at all.

plane	triangle	axioms	conic	points	distance	classical
quadrangle	concurrent	algebra	polarity	lines	angle	affine
Pappus	collinear	parallel	infinity	field	order	projective

11. (28 points) The classical theorem of ______ holds in a projective plane if and only if the plane is classical, meaning that it is coordinatized by a ______. The proof of theorem is a somewhat involved exercise using ______. The theorem makes no reference to the ______ of points on a line; nor does it require the notions of ______ or ______ which are featured prominently in Euclidean plane geometry.

We define a ______ to be a configuration of four ______, no three of which are ______. In the case of ______ planes and ______ planes, the existence of such a configuration is required by the ______, in order to exclude degenerate examples. Also for such planes, any three distinct points are either ______ or they determine a unique ______.

12. (18 points) The figure on the right depicts a configuration of points and lines in the real projective plane. Determine the coordinates of the points *P*, *Q*, *R* and verify their collinearity.



13. (15 points) Consider the following statement, valid in the real projective plane (also in the Euclidean plane, if one makes accommodations for parallel lines).

Theorem. Let A, B, C be distinct points on a nondegenerate conic γ ; and let a, b, c be the tangent lines to γ at the points A, B, C respectively. Consider the points $A' = b \cap c$, $B' = c \cap a$ and $C' = a \cap b$. Then the three lines AA', BB' and CC' are concurrent.

Sketch the configuration described in this theorem. Also state the dual of this theorem, which is also a valid theorem. (*Do not prove the theorem or its dual.*)

Section C: Fractals

14. (9 points) Consider the curve *C* defined as the limit of the following infinite sequence, each member having length ⁵/₃ times the length of the previous member of the sequence. (Note that at each step, one replaces each segment _____ by ____). Determine the Hausdorff dimension of *C*.