

Tessellations (Regular Tilings) in the Euclidean and Hyperbolic Planes

The figure below shows a tessellation (i.e. tiling) of the Euclidean plane with congruent (equalsized) triangles having angles $45^{\circ}-45^{\circ}-90^{\circ}$. A reflection in the line ℓ preserves this tessellation (i.e. mirror images of triangles of the tiling, are also triangles of the tiling).

The figure below shows a tessellation of the hyperbolic plane with congruent triangles having angles $30^{\circ}-45^{\circ}-90^{\circ}$ (and therefore area $\pi/12$) and a line C_1 such that reflection in C_1 preserves the tessellation. The hyperbolic plane is represented in the Poincaré model as the interior of the circle *C*; the line C_1 is represented by a Euclidean circle C_1 orthogonal to *C*; and the reflection in this line is represented by inversion in C_1 .

M.C. Escher's *Circle Limit IV* (1960) depicts a tiling of the real hyperbolic plane, seen here in the Poincaré model, by angels and demons. Any two angels are congruent in the hyperbolic plane, as are any two demons; and they are readily abstracted to give a tiling of the hyperbolic plane by congruent $45^{\circ}-45^{\circ}-60^{\circ}$ triangles colored alternately black and white. Here is a copy of Escher's image, annotated by red lines that emphasize the triangular tiling:

