
 

 
 

 

HW3  Due Tuesday, November 27, 2018 
 

The following theorem is valid in all classical projective planes (i.e. those projective planes which 

can be coordinatized by a field.)  There also exist nonclassical projective planes in which the 

Theorem of Pappus fails; thus the axioms for projective plane geometry are not complete. 
 
Pappus’ Theorem.  Let l and m be 

distinct lines.  Let P, Q, R be distinct 

points on 𝓁 (not on m), and let S, T, U be 

distinct points on m (not on l).  Let 

a be the line joining Q and S; 

b be the line joining R and S; 

c be the line joining P and T; 

d be the line joining R and T; 

e be the line joining P and U; 

f  be the line joining Q and U; 

X the intersection of a and c; 

Y the intersection of b and e; Z 

the intersection of d and f. 

Then X, Y and Z are collinear. 

 

  Now consider the projective plane of order 3, which we illustrate by the following picture: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This plane has thirteen points:  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and thirteen lines: 

 

𝐴 =  {0,1,3,9} 𝐷 =  {3,4,6,12} 𝐺 =  {6,7,9,2} 𝐽 =  {9,10,12,5} 𝑀 =  {12,0,2,8} 

𝐵 =  {1,2,4,10} 𝐸 =  {4,5,7,0} 𝐻 =  {7,8,10,3} 𝐾 =  {10,11,0,6}    (notice the 

𝐶 =  {2,3,5,11} 𝐹 =  {5,6,8,1} 𝐼 =  {8,9,11,4} 𝐿 =  {11,12,1,7}      pattern here?) 



 
 

1. Verify that the conclusion of Pappus’ 

Theorem holds in the following instance: 

Consider the points 3, 0, 9, 5, 8, 6 in 

place of P, Q, …, U respectively; note 

that the lines 𝓁 and m become the lines A 

and F of the projective plane of order 3. 
 

Identify the lines and points that are 

labeled by question marks in the figure 

at the right, and verify that the three 

points of intersection are indeed 

collinear.  What is the line joining them? 

(shown as a dotted line in our figure). 
 
 

If S is any conic in the plane, every line 𝓁 meets the conic in 0, 1 or 2 points, and then 𝓁 is called a 

passant, tangent, or secant line respectively.  Any point P of the plane lies on 0, 1 or 2 tangents, in 

which case P is called an interior point, a point of the conic (also called an absolute point), or an 

exterior point respectively.  It may be shown that the point set S = {0, 1, 2, 6} is a conic in the 

projective plane of order 3 shown above. (Please assume this; don’t attempt to prove it.) 
 

2.   For the conic S = {0, 1, 2, 6} in the projective plane of order 3 shown above: 

a.   List the passant lines. 

b.   List the tangent lines. 

c.   List the secant lines. 

d.   List the interior points. 

e.   List the absolute points (i.e. points of the conic). 

f. List the exterior points. 

g.   Complete the blanks in the following sentences with the correct numbers: 
There are          passant lines, each of which passes through

interior points,          absolute points, and          exterior points

         There are          tangent lines, each of which passes through 

interior points,          absolute points, and          exterior points. 

There are          secant lines, each of which passes through 

interior points,          absolute points, and          exterior points. 

h.   Complete the blanks in the following sentences with the correct numbers: 
There are          interior points, each of which lies on 

passant lines,          tangent lines, and          secant lines. 

There are          absolute points, each of which lies on 

passant lines,          tangent lines, and          secant lines. 

There are        exterior points, each of which lies on 

passant lines,          tangent lines, and          secant lines.

i. Compare your answers in (g) and (h).  How does this illustrate the principle of duality? 
 
 

3. Consider the cubic curve given by the equation 𝑦2𝑧 = 𝑥3 − 𝑥𝑧2 in projective coordinates.  In the affine 

plane 𝑧 = 1 its equation becomes 𝑦2 = 𝑥3 − 𝑥.  Over the field 𝔽7 = {0,1,2,3,4,5,6}, the curve has 

seven affine points (0,0), (1,0), (6,0), (5, ±1), (4, ±2); i.e. in projective coordinates, the seven points 

(0,0,1), (1,0,1), (6,0,1), (5, ±1,1), (4, ±2,1); also the ‘vertical’ point (0,1,0) at infinity, which we 

denote simply by 𝑂.  So altogether, the curve has eight points. These points are represented in the 

SpotIt® deck (see ericmoorhouse.org/pg27 and click on the picture of the SpotIt® deck) by the eight 

cards 

http://ericmoorhouse.org/pg27/


        

(0,0) (1,0) (6,0) (5,1) (5, −1) = (5,6) (4,2) (4, −2) = (4,5) 𝑂 

 

respectively.  Note that the curve is symmetric about the 𝑥-axis: the reflection in the 𝑥-axis is the map 
(𝑥, 𝑦, 𝑧) ↦ (𝑥, −𝑦, 𝑧); it maps the curve to itself. 

 To add two points 𝑃, 𝑄 of the curve, assuming 𝑃 ≠ 𝑄, consider first the secant line 𝑃𝑄.  According 

to Bezout’s Theorem, this secant line must intersect the curve in a third point 𝑅 (counting multiplicity).  

Reflecting 𝑅 in the 𝑥-axis gives the point 𝑃 + 𝑄.  One must account for intersection multiplicity, however.  

Thus for example if 𝑃 = 𝑄 is a point of the curve, then in place of a secant line we must take the tangent line 

at 𝑃. 

 

Example:  To add the points 𝑃 = (5,1) and 𝑄 = (6,0), note that the secant line 𝑃𝑄 is given by 𝑦 = −𝑥 − 1 

which meets the curve at a third point (4,2).  Reflecting this point in the 𝑥-axis gives the point (4,5); so 𝑃 +
𝑄 = 𝑄 + 𝑃 = (4,5).  Alternatively, from the SpotIt® demonstration site, we see that 

 

 

 

 

 
 

whose reflection in the 𝑥-axis is (4, −2) = (4,5).  Third method: one can instead use homogeneous 

coordinates for the projective plane: the line joining 𝑃 = (5,1,1) and 𝑄 = (6,0,1) is (
1
1
1

) ; and the third point 

on the curve satisfying this equation 𝑥 + 𝑦 + 𝑧 = 0 is the point (4,2,1).  This reflects to the point 

(4, −2,1) = (4,5,1). 

 

Second Example:  To add the points 𝑃 = (5,1) and 𝑆 = (1,0), note that the secant line 𝑃𝑆 is given by 𝑦 =
2𝑥 + 5.  We see that this secant line passes through no other points of the curve.  But wait: by implicit 

differentiation, the tangent line at a point (𝑥, 𝑦) of the curve 𝑦2 = 𝑥3 − 𝑥 has slope 𝑦′ satisfying 2𝑦𝑦′ =

3𝑥2 − 1, i.e. 𝑦′ =
3𝑥2−1

2𝑦
.  So the tangent line at 𝑃 has slope has slope 2; that is, the line 𝑃𝑆 is tangent to the 

curve at 𝑃.  So 𝑃 is really a double point of the curve.  Reflecting 𝑃 in the 𝑥-axis gives the point (5, −1) =
(5,6), whence 𝑃 + 𝑆 = 𝑆 + 𝑃 = (5,6). 

 

Third Example: To add the point 𝑇 = (1,0) to itself, we must take the tangent line at 𝑇.  The formula for 𝑦′ 
above gives the slope of the tangent line at 𝑇 to be infinite; so it is the vertical line 𝑥 = 1.  The third point of 

the curve on this line is the point 𝑂 = (0,1,0).  Reflecting this in the 𝑥-axis gives (0, −1,0) = (0,1,0) = 𝑂 

again; so 𝑇 + 𝑇 = 𝑂. 
 

Fourth Example:  To add the points 𝑃 = (5,1) and 𝑃’ = (5,6), note that the secant line 𝑃𝑃’ is the vertical 

line 𝑥 = 5 which passes also through 𝑂, the vertical point at infinity.  As in the previous example, 𝑃 + 𝑃’ =
𝑂. 

 

Fifth Example:  To add the point 𝑃 = (5,1) to itself, recall (above) that the tangent line at 𝑃 has slope 2; it 

is the line 𝑦 = 2𝑥 + 5, meeting the curve in a third point (1,0) which reflects to the point (1,0).  So 𝑃 +
𝑃 = (1,0). 

 

 

 

𝑃𝑄 is the line 

 

which meets the curve at a third point  (4,2) =    

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These five examples have been included in the addition table above for the group of eight points of the 

curve.  Complete the table by correctly entering the missing values. 

 

 

 

Remarks:  You should quickly confirm that 𝑂 is the additive identity element for this group: 𝐴 + 𝑂 = 𝐴 for 

every point 𝐴 on the curve.  And while the geometric rules given above suffice to complete the addition 

table, you may also find it useful to use the associative law.  (As mentioned in class, it may be shown that 

addition of points is associative—this is not obvious!)  For example, 
 

(5,6) + (5,6) = (5,6) + [(5,1) + (1,0)] = [(5,6) + (5,1)] + (1,0) = 𝑂 + (1,0) = (1,0) 
 

by the previous remark. 

 

 

 

 

 
 

 

The remaining problems below require straightedge-and-compass constructions.  Perform all constructions in the 

space provided.  Do not erase any of your work; show clearly all line segments and circular arcs used in your 

construction.  Clearly label the final points and/or lines required by each question.  If you mess up and need to start 

again, print a fresh copy of this assignment from the course website.   For demonstrations of the more basic 

constructions, follow the link provided on the course website. 

 

 

 

 

 

 

 
 

 

+ 𝑂 (0,0) (1,0) (6,0) (5,1) (5,6) (4,2) (4,5) 

𝑂         

(0,0)         

(1,0)   𝑂  (5,6)    

(6,0)     (4,5)    

(5,1)   (5,6) (4,5) (1,0) 𝑂   

(5,6)     𝑂    

(4,2)         

(4,5)         



4. The circle 𝛼 is centered at 𝐴 as shown.  Construct the image 𝛼′of 𝛼 under inversion in 𝛾, a circle 

centered at 𝑂. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also construct 𝐴’, the inverse of 𝐴 in 𝛾.  Is 𝐴’ the center of 𝛼′?  Explain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5.  Construct the inverses 𝛼′, 𝛽′ (respectively) of the circles 𝛼, 𝛽 (as shown) in the circle 𝛾 (centered at 

𝑂). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measure (as well as you can using a protractor) the angle between circles 𝛼 and 𝛽.  (This requires first 

drawing tangent lines to 𝛼 and 𝛽 at a point of intersection.)  Do the same for 𝛼′ and 𝛽′. 
 

angle between 𝛼 and 𝛽 =  

 

angle between 𝛼′ and 𝛽′ =  

 

How do these two angles compare? 

 

 

 

 

 

 


