
 

 

More on the Axioms of Plane Geometry 

Consistency 

Recall our axioms for affine plane geometry: 

A1. Any two distinct points are on exactly one line. 

A2. For any line 𝓁 and any point 𝑃, there is exactly one line through 𝑃 not meeting 𝓁. 

A3. There exist four points of which no three are collinear. 

In class we proved several results in affine plane geometry, including the fact that in any 

affine plane, any two lines have the same number of points.  The number of points on any 

line is a constant (finite or infinite) called the order of the affine plane; and this number 

is at least 2.  There exist affine planes of order 2, 3, 4, 5, 7, 8, 9, 11, 13, etc. and of infinite 

order.  The Euclidean plane is an example of an affine plane of infinite order.  There is no 

affine plane of order 6, a result known for many years; this can be checked by hand (but 

this is a lengthy exercise).  

In the 1980’s the combined efforts of several mathematicians, primarily Clement Lam, 

showed that there is no affine plane of order 10.  This result relies on thousands of hours 

of supercomputer time, adding fuel to the controversy over the legitimacy of computer 

proofs. 

Is there an affine plane of order 12?  Nobody knows. 

Consider the statements 

A4. There exist lines 𝓁 and m such that 𝓁 has exactly 2 points and m has exactly 3 points. 

A5. There exists a line 𝓁 with exactly 10 points. 

A6. There exists a line 𝓁 with exactly 12 points. 

Clearly the four axioms A1, A2, A3, and A4 form an inconsistent axiomatic system since we showed (Theorem 3) 

that axioms A1, A2, A3 imply that any two lines have the same number of points, contrary to A4.  More generally 

any axiomatic system from which we can possibly derive a contradiction, is inconsistent.  Thus the system consisting 

of A1, A2, A3, and A5 is also inconsistent (if we accept the computer evidence of this) but this fact is far from 

obvious.  Is the system consisting of axioms A1, A2, A3, and A6 consistent?  Nobody knows. 

 

Completeness and Isomorphism 

Our three axioms A1, A2 and A3 for affine plane geometry are consistent since there is at least one model for these 

axioms.  However this system is incomplete because in this system there exist relevant statements which cannot be 

either proven or disproven.  Consider for example the statement: 

A7. There exists a line 𝓁 with exactly 2 points. 
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There exist affine planes in which A7 holds, and there exist affine planes in which A7 fails.  Thus one can never 

either prove or disprove A7 using just A1, A2 and A3. 

However, if we adopt A1, A2, A3 and A7 as axioms, then all models are isomorphic to the quadrangle (affine 

plane of order 2) we have considered.  This is the affine plane which may be described in various ways, including 

the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although the interpretation of the notions of ‘point’, ‘line’ and ‘incidence’ differs in each case, clearly the four 

models are essentially equivalent, having simply different names for the various objects but the same corresponding 

properties.  Thus any two of these models are isomorphic. 

We may take axioms A1, A2, A3 and A7 as axioms for the affine plane of order 2.  This axiomatic system 

is complete because in this system, every relevant statement can be either proven or disproven.  To see which of 

these two cases arises, simply check whether or not the statement holds in our favorite model (any of the three models 

above will do).  For example in the affine plane of order 2, statement A4 is clearly false as we have seen how to 

prove from the axioms A1, A2, A3, A7 that every line has the same number of points, in this case two. 

 

Independence 

We strive for an objective understanding of our world, yet we realize that it is impossible to codify reality without 

at least making some assumptions.  We are thereby compelled to ask: what is the smallest number of assumptions 

we need to make in order to generate all the explanations we could reasonably seek?  (For example, what is a 

minimum set of assumptions about the Euclidean plane from which all other properties may be derived?)  Our three 

axioms A1, A2 and A3 for affine plane geometry are minimal in the following sense: none of these three axioms 

may be derived from the other two.  We know this because for each axiom there is a geometry that satisfies the other 

two axioms but not the one in question. 

 

First Model: 

A Picture 

Four points:  the letters 𝐴, 𝐵, 𝐶, 𝐷. 
Six lines:  the subsets {𝐴, 𝐵}, {𝐴, 𝐶}, {𝐴, 𝐷}, {𝐵, 𝐶}, {𝐵, 𝐷}, {𝐶, 𝐷}. 
Incidence is just ordinary set membership, e.g. the point 𝐵 is on the line 
{𝐴, 𝐵} but not on the line {𝐴, 𝐶}. 

Second Model: 

Sets 

Four points:  the students Ann, Bob, Carl, Don. 
Six lines:  the classes Math, History, Geography, Biology, Music, Gym.  
Here 
 

Ann & Bob are together in Math; 
Ann & Carl are in History; 
Ann & Don are in Geography; 
Bob & Carl are in Biology; 
Bob & Don are in Music; 
Carl & Don are in Gym. 

 

Incidence refers to a student taking a class; e.g. the point Carl is not on 
the line Music. 

Third 

Model: 

Students 

and Classes 



 

 

 

 

 

 

 

 

 

This shows that each of our three axioms A1, A2 and A3 is independent of the others.  In any dependent axiomatic 

system one can always  remove  the  redundant  axioms  (those  that  can  be  derived  from  the  others)  until  one  

obtains an independent system.  One possible reason for introducing redundant axioms is that by assuming these 

statements, we no longer have to prove them, and this will relieve some of the burden of proof at the outset in our 

study of such a system.  But this takes us further away from our goal of appreciating what the minimal set of 

assumptions is.  Moreover there is a danger in choosing too many axioms: this often leads to unforeseen 

contradictions, thereby rendering the system inconsistent. 

 

Why do we need axioms? 

Ideally, we would like to believe that every statement is either true or false; moreover if a statement is true, we would 

like to be able to prove it; if it is false, we would like to be able to disprove it.  Consider 

however the statement: ‘This statement is false’.  Is this statement true or false?  If it is true, 

then it is false; but if it is false, then it is true. How do we avoid this paradox? 

In 1903 Bertrand Russell published the following set-theoretic variant of the preceding 

paradox: Let 𝑆 be the set consisting of all sets 𝑋 such that 𝑋 is not an element of 𝑋.  Is 𝑆 ∈

𝑆?  If so, then by definition, 𝑆 ∉ 𝑆, a contradiction; on the other hand if 𝑆 ∉ 𝑆, then we must 

have 𝑆 ∈ 𝑆, again a contradiction.  In order to resolve this paradox, mathematicians realized 

that we needed to be more careful (less sloppy) about what we consider to be a set.  A 

system of rules for constructing sets were proposed by Zermelo in 1908 and revised by 

Fraenkel and Skolem in 1922 to become what we now call the Zermelo-Fraenkel (ZF) 

axioms for set theory.  

These axioms allow 

us to construct all the 

sets we need to do modern mathematics, 

starting with the empty set, and then 

recursively forming new sets from old by well-

known processes of taking subsets, power sets, 

Cartesian products, etc.  It is hoped (and widely 

believed) that these axioms are consistent, i.e. 

that no contradiction will ever be deduced from 

ZF.  This is important because the entire 

logical foundation of modern mathematics is 

built on set theory.  In particular the integer and real number systems are constructed using set theory; and the 

Euclidean plane is constructed using real numbers (for coordinates) so it is also founded upon set theory. 
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Gödel’s Theorem 

Unfortunately, we cannot prove that ZF is consistent (unless it is inconsistent).  If ZF is inconsistent, then we can 

derive a contradiction from the ZF axioms; and then from a contradiction we can prove 

anything.  (Using a contradiction we can prove every statement to be true, and we can 

prove every statement to be false.)  So we must accept the following truth: No one can ever 

prove (using the axioms for modern mathematics) that mathematics is consistent… unless 

it is inconsistent, in which case we can prove anything (including the consistency of modern 

mathematics!).  These truths are implicit in Gödel’s 

Incompleteness Theorem, which states that no axiomatic system 

which is strong enough to include number theory can be both 

complete and consistent. 

In the early 1900’s, David Hilbert (at that time perhaps the 

greatest living mathematician) issued a challenge to 

mathematicians: Find an algorithm to decide whether a given 

mathematical statement was true or false, and in each case to 

generate a proof of the correct conclusion.  However, in one of the greatest intellectual 

accomplishments of that century, Kurt Gödel showed that this dream was unrealizable: there 

exist statements in number theory (involving only integers) which can neither be proven nor 

disproven.  Thus the axioms for modern mathematics, and in fact the ZF axioms themselves, 

are incomplete. 

 

Why is this important in Geometry? 

Euclid pioneered the use of the axiomatic method in his Elements, where in the third century 

BC he published a list of axioms (‘postulates’) for plane geometry.  Euclid intended his 

axioms to be complete, consistent and independent.  His fifth postulate (essentially what we 

have called A2) seemed so self-evident that he worried whether it might be derivable from 

his first four postulates. Unable to find a proof of the fifth postulate from the first four, he 

finally listed it among his axioms. 

Many geometers in the latter part of the second millennium tried to prove Euclid’s fifth 

postulate from the 

first four. Some in 

fact published 

erroneous proofs.  

These were typical 

examples of ‘circular reasoning’: in their 

‘proofs’ they assumed the very fact that they 

were trying to prove.  Finally in the 19th 

century, Gauss, Lobachevsky and Bolyai 

found models of Euclid’s first four postulates, 

in which the fifth postulate fails.  These 

models describe what is now known as the 

hyperbolic plane. 

In the hyperbolic plane, given a line 𝓁 and a point 𝑃 not on 𝓁, there exist many lines through 𝑃 which do not meet 𝓁.  

Some have protested that such a geometry cannot be ‘true’ or ‘correct’.  We must remember, however, that no theory 

is correct or incorrect; it can only be judged as consistent or inconsistent; complete or incomplete.  Logically 

speaking, hyperbolic geometry is just as valid as Euclidean geometry; one can construct models for the hyperbolic 
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plane using real coordinates in a manner very similar to the Cartesian description of Euclid’s plane.  Or one can 

construct models of the hyperbolic plane within Euclidean geometry, without appealing to coordinates at all. 

Conversely one can construct models of Euclidean geometry within hyperbolic space.  This shows that Euclidean 

geometry is consistent if and only if hyperbolic geometry is consistent.  Hyperbolic geometry has just as much right 

to be considered valid as does Euclidean geometry. 

However, it is impossible to prove that Euclidean geometry is consistent (unless it is inconsistent).  And so the same 

is true also for hyperbolic geometry.  This is because Euclidean geometry is modeled by the real numbers, and 

conversely; so that Euclidean geometry is consistent if and only if real number arithmetic is consistent. 

This in turn depends on the ZF axioms, which we cannot prove to be consistent. 

 

Relative Consistency 

If we have faith (and we certainly do not have proof) that the real numbers are consistent, then our model of Euclidean 

geometry using real coordinates will also be consistent. This is a proof of relative consistency: Euclidean geometry 

is just as consistent as the real number system. In the same way hyperbolic geometry is relatively consistent: we 

have a model of hyperbolic geometry using either Euclidean geometry or the real numbers. 

 

But what is the ‘true’ plane geometry? 

What does one mean by ‘true’?  Does one mean ‘physical’?  None of our ideal geometries perfectly represent physical 

reality, for several reasons.  Ideal points and lines do not exist in nature.  Moreover in the physical universe, Euclid’s 

fifth postulate fails due to the warping of spacetime which is caused by the presence of matter.  In this sense 

hyperbolic geometry is more accurate than Euclidean geometry as a representation of physical reality.  Yet even this 

representation is fundamentally flawed at small scales of distance, since the real number line is totally ordered; 

whereas it is not physically possible to totally order positions on a physical ‘line’ as our idealized mental image 

suggests.  Euclidean geometry, hyperbolic geometry, and the geometry of physical space (more correctly, physical 

spacetime) are all very complicated objects with surprising and subtle properties; but the subtleties of physical reality 

differ from the subtleties of Euclidean space.

 


