

Solutions to the Test

November, 2024

- 1. (a) Divide the equation $\alpha^3 7\alpha + 2 = 0$ by α and solve to obtain $\frac{1}{\alpha} = \frac{7}{2} + 0\alpha + (-\frac{1}{2})\alpha^2$.
 - (b) Expand $x^3 7x + 2 = (x \alpha)(x \beta)(x \gamma)$ and equate coefficients to obtain

$$\begin{array}{rcl} \alpha+\beta+\gamma &=& 0,\\ \alpha\beta+\alpha\gamma+\beta\gamma &=& -7,\\ \alpha\beta\gamma &=& -2,\\ \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} &=& \frac{\alpha\beta+\alpha\gamma+\beta\gamma}{\alpha\beta\gamma} &=& \frac{-7}{-2} &=& \frac{7}{2} \end{array}$$

Compare: #6,7 on Practice Problems 1.

- 2. Know your examples.
 - (a) $F = \mathbb{Q}[\alpha]$ where $\alpha = 2^{1/3}$ (example done in class).
 - (b) $E = \mathbb{Q}[\alpha]$ where $\alpha^3 + \alpha^2 2\alpha 1 = 0$ (example done in class). A second example (from practice problems) instead takes $\alpha^3 3\alpha + 1 = 0$.
 - (c) x 7
 - (d) $x^4 + x^2 + 1 = (x^2 + x + 1)(x^2 x + 1)$. Or $x^4 + 2x^2 + 1 = (x^2 + 1)^2$.
 - (e) $R = \{aI + bA : a, b \in \mathbb{Q}\}$ where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 0 & 5 \\ 1 & 0 \end{bmatrix}$
 - (f) $\{1, \alpha, \alpha^2\}$ is the standard basis
 - (g) In our notation for the splitting field of x^3-2 , we used $\alpha = 2^{1/3}$ and $\omega = e^{\frac{2\pi i}{3}} = \frac{1+\sqrt{-3}}{2}$. Take $F_1 = \mathbb{Q}[\alpha]$ and $F_2 = \mathbb{Q}[\alpha\omega]$.
 - (h) An easy example is $\alpha = \sqrt{2}$ and $\beta = 1 + \sqrt{2}$.
- 3. (a) $\alpha_2 = -\sqrt{4+\sqrt{5}}, \ \alpha_3 = \sqrt{4-\sqrt{5}}, \ \alpha_4 = -\sqrt{4-\sqrt{5}}.$
 - (b) No; they are not linearly independent since $\alpha_1 + \alpha_2 = 0$ and $\alpha_3 + \alpha_4 = 0$.
 - (c) Note that $\sqrt{5} = \alpha_1^2 5 \in E$ and $\sqrt{11} = \alpha_1 \alpha_3 \in E$. Multiplying these also gives $\sqrt{55} \in E$. At this point, we see that $\{1, \sqrt{5}, \sqrt{11}, \sqrt{55}\}$ is a basis for E, just as in our example of $\mathbb{Q}[\sqrt{2}, \sqrt{5}]$ done in class.
 - (d) G is a Klein four-group (compare with $Q[\sqrt{2}, \sqrt{5}]$ from class).
 - (e) Of course $\beta \notin E$ since $E \subset \mathbb{R}$ whereas β is not real. But $\beta^2 = (2+i) + (2-i) + 2\sqrt{(2+i)(2-i)} = 4 + 2\sqrt{5} \in E$ since $\sqrt{5} \in E$. Unfortunately I made a typo on this question so we don't actually get $\beta \in E$, sorry.
- 4. (a) T (b) F (c) F (d) F (e) T (f) T (g) T (h) F (i) T (j) F

Some comments and explanations, provided for your benefit only (not required for answering #4):

- (a) Every subfield of \mathbb{C} contains \mathbb{Q} .
- (b) Since $[\mathbb{Q}[2^{1/3}] : \mathbb{Q}] = 3$ does not divide $[\mathbb{Q}[2^{1/2}] : \mathbb{Q}] = 2$, $\mathbb{Q}[2^{1/2}]$ cannot be a subfield of $\mathbb{Q}[2^{1/3}]$ (by the transitivity of degrees of field extensions).
- (c) Every number field (finite extension of Q) has only finitely many subfields. As discussed in class, this follows from the fact that a vector space over an infinite field cannot be the union of finitely many proper subspaces.
- (d) The extension $\mathbb{Q}[\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \ldots] \supset \mathbb{Q}$ is an extension of infinite degree. So is the subfield of \mathbb{R} consisting of all real algebraic numbers.
- (e) Given $\alpha \in \mathbb{C}$, the polynomial $x^2 \alpha \in \mathbb{C}[x]$ has a root by the Fundamental Theorem of Algebra.
- (f) This was observed during our discussion of Galois theory. But in fact it is elementary to prove that $K = \{a \in F : \sigma(a) = a\}$ is a subfield of F: show that it contains 0 and 1; and whenever $a, b \in K$, it is easy to see that $a, b, a \pm b, ab \in K$ (same for $\frac{a}{b} \in K$, if $b \neq 0$).
- (g) The n+1 elements $1, \alpha, \alpha^2, \ldots, \alpha^n \in F$ must be linearly dependent over \mathbb{Q} , so there exist $c_0, c_1, \ldots, c_n \in \mathbb{Q}$, not all zero, such that $a_0 + a_1\alpha + a_2\alpha^2 + \cdots + a_n\alpha^n =$ 0. We may suppose that the last nonzero coefficient in this list of coefficients is a_k ; then dividing by a_k , we obtain a monic polynomial of degree $k \in \{1, 2, \ldots, n\}$ with rational coefficients, having α as a root.
- (h) The ring of 2×2 real matrices is not commutative, and it has zero divisors.
- (i) As explained in class, σ must permute the roots of $x^2 2 \in \mathbb{Q}[x]$.
- (j) Every irreducible polynomial in $\mathbb{R}[x]$ has degree 1 or 2. This is a corollary of the Fundamental Theorem of Algebra; see the handout on Complex Numbers for details.