
Solutions to the Test
November, 2024

1. (a) Divide the equation α3−7α+2 = 0 by α and solve to obtain 1
α = 7

2 +0α+(− 1
2 )α2.

(b) Expand x3 − 7x+ 2 = (x− α)(x− β)(x− γ) and equate coefficients to obtain

α+β+γ = 0,

αβ+αγ+βγ = −7,

αβγ = −2,
1
α+ 1

β+ 1
γ = αβ+αγ+βγ

αβγ = −7
−2 = 7

2 .

Compare: #6,7 on Practice Problems 1.

2. Know your examples.

(a) F = Q[α] where α = 21/3 (example done in class).

(b) E = Q[α] where α3+α2−2α−1 = 0 (example done in class). A second example

(from practice problems) instead takes α3−3α+1 = 0.

(c) x− 7

(d) x4+x2+1 = (x2+x+1)(x2−x+1. Or x4+2x2+1 = (x2+1)2.

(e) R = {aI+bA : a, b ∈ Q} where I =
[
1
0

0
1

]
, A =

[
0
1

5
0

]
(f) {1, α, α2} is the standard basis

(g) In our notation for the splitting field of x3−2, we used α = 21/3 and ω = e
2πi
3 =

1+
√
−3

2 . Take F1 = Q[α] and F2 = Q[αω].

(h) An easy example is α =
√

2 and β = 1+
√

2.

3. (a) α2 = −
√

4+
√

5, α3 =
√

4−
√

5, α4 = −
√

4−
√

5.

(b) No; they are not linearly independent since α1 + α2 = 0 and α3 + α4 = 0.

(c) Note that
√

5 = α2
1−5 ∈ E and

√
11 = α1α3 ∈ E. Multiplying these also gives√

55 ∈ E. At this point, we see that {1,
√

5,
√

11,
√

55} is a basis for E, just as

in our example of Q[
√

2,
√

5] done in class.

(d) G is a Klein four-group (compare with Q[
√

2,
√

5] from class).

(e) Of course β /∈ E since E ⊂ R whereas β is not real. But β2 = (2+i) + (2−i) +

2
√

(2+i)(2−i) = 4 + 2
√

5 ∈ E since
√

5 ∈ E. Unfortunately I made a typo on

this question so we don’t actually get β ∈ E, sorry.
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Some comments and explanations, provided for your benefit only (not required for

answering #4):

(a) Every subfield of C contains Q.

(b) Since [Q[21/3] : Q] = 3 does not divide [Q[21/2] : Q] = 2, Q[21/2] cannot be a

subfield of Q[21/3] (by the transitivity of degrees of field extensions).

(c) Every number field (finite extension of Q) has only finitely many subfields. As

discussed in class, this follows from the fact that a vector space over an infinite

field cannot be the union of finitely many proper subspaces.

(d) The extension Q[
√

2,
√

3,
√

5,
√

7, . . .] ⊃ Q is an extension of infinite degree. So is

the subfield of R consisting of all real algebraic numbers.

(e) Given α ∈ C, the polynomial x2 − α ∈ C[x] has a root by the Fundamental

Theorem of Algebra.

(f) This was observed during our discussion of Galois theory. But in fact it is ele-

mentary to prove that K = {a ∈ F : σ(a) = a} is a subfield of F : show that it

contains 0 and 1; and whenever a, b ∈ K, it is easy to see that a, b, a± b, ab ∈ K
(same for a

b ∈ K, if b 6= 0).

(g) The n+1 elements 1, α, α2, . . . , αn ∈ F must be linearly dependent over Q, so

there exist c0, c1, . . . , cn ∈ Q, not all zero, such that a0+a1α+a2α
2+· · ·+anαn =

0. We may suppose that the last nonzero coefficient in this list of coefficients is

ak; then dividing by ak, we obtain a monic polynomial of degree k ∈ {1, 2, . . . , n}
with rational coefficients, having α as a root.

(h) The ring of 2× 2 real matrices is not commutative, and it has zero divisors.

(i) As explained in class, σ must permute the roots of x2 − 2 ∈ Q[x].

(j) Every irreducible polynomial in R[x] has degree 1 or 2. This is a corollary of

the Fundamental Theorem of Algebra; see the handout on Complex Numbers for

details.


