

Solutions to Sample Test

- 1. (a) The sixth roots of unity are roots of $x^{6}-1 = (x-1)(x+1)(x^{2}+x+1)(x^{2}-x+1)$. Here
 - x-1 has as its root the primitive first root of unity, 1;
 - x+1 has as its root the primitive square root of unity, $\zeta^3 = -1$;
 - x^2+x+1 has as its roots the primitive cube roots of unity, ζ^2 and ζ^4 ; and
 - $x^2 x + 1$ has as its roots the primitive sixth roots of unity, ζ and $\zeta^5 = \zeta^{-1} = \overline{\zeta}$. Of course the roots of m(x) are $\frac{1\pm\sqrt{-3}}{2}$ which are irrational, so m(x) is irreducible in $\mathbb{Q}[x]$.
 - (b) We have $[E:\mathbb{Q}] = \deg m(x) = 2$. One explicit choice of basis for E over \mathbb{Q} is $\{1, \zeta\}$; another is $\{1, \sqrt{-3}\}$.
 - (c) The nontrivial automorphism of E is complex conjugation, $\tau(x) = \overline{z}$, which interchanges the two roots of m(x). Of course, $G = \langle \tau \rangle = \{\iota, \tau\}$ is the group of order 2; so it is both cyclic and abelian.
 - (d) From $\zeta = e^{\pi i/3} = \frac{1}{2}(1+\sqrt{-3})$ we get $\sqrt{-3} = 2\zeta 1 \in E$.
 - (e) The blue arrows indicate the Galois correspondence:

2. Given $h \in G$, left-multiplication by h defines a map $G \to G$, $g \mapsto hg$ which is bijective. This map permutes the terms in the sum $T(\alpha)$, so it fixes the sum. Similarly, it permutes the factors in the product $N(\alpha)$, thereby fixing the product. Less verbosely,

$$h(T(\alpha)) = h\left(\sum_{g \in G} g(\alpha)\right) = \sum_{g \in G} hg(\alpha) = \sum_{g' \in G} g'(\alpha) = T(\alpha)$$

and

$$h(N(\alpha)) = h\Big(\prod_{g \in G} g(\alpha)\Big) = \prod_{g \in G} hg(\alpha) = \prod_{g' \in G} g'(\alpha) = N(\alpha).$$

Since $T(\alpha)$ and $N(\alpha)$ are fixed by every element $h \in G$, they lie in the fixed subfield of G, which is \mathbb{Q} (by the Galois correspondence).

3. Since α is a root of f(x), $2\alpha+1$ is a root of $f\left(\frac{x-1}{2}\right) = \frac{1}{8}m(x)$ where $m(x) = \frac{1}{8}m(x)$ x^3+3x^2-5x+9 . So m(x) is the minimal polynomial of $2\alpha+1$ over \mathbb{Q} .

The irreducibility of m(x) follows directly from the irreducibility of f(x). (Because the change of variable $x \mapsto \frac{x-1}{2}$ is invertible, factoring m(x) in $\mathbb{Q}[x]$ would be equivalent to factoring f(x) in $\mathbb{Q}[x]$.) Alternatively, the irreducibility of m(x) in $\mathbb{Q}[x]$ follows directly from the fact that $m(\pm 1) \neq 0$, so m(x) has no roots in \mathbb{Z} , so it has no roots in \mathbb{Q} .)

4. one-to-one, subring, nonzero, unit, field, inverse

5. (a) T (b) F (c) T (d) F (e) T (f) T (g) T (h) F (i) T (j) F

Some comments and explanations, provided for your benefit only (not required for answering #5):

- (a) Every subfield of \mathbb{R} contains \mathbb{Q} .
- (b) Consider the extension $E \supset \mathbb{C}$ given by the field $E = \mathbb{C}(x)$ of rational functions in an indeterminate x, with complex coefficients. Here $[E : \mathbb{C}] = \infty$.
- (c) This is easy to prove, directly from the axioms.
- (d) If $\alpha = 2^{\frac{1}{3}}$ then $F = \mathbb{Q}[\alpha]$ is an extension of \mathbb{Q} of degree 3, with only one automorphism (the identity). Know your examples.
- (e) Let $\{\alpha_1, \ldots, \alpha_m\}$ be a basis for F over \mathbb{Q} , and let $\{\beta_1, \ldots, \beta_n\}$ be a basis for F' over \mathbb{Q} . Then the set of all products $\alpha_i\beta_j$ spans an extension field $E \supseteq \mathbb{Q}$ containing both F and F'. This is an exercise, and we note that $[E : \mathbb{Q}] \leq mn$ so E is a finite extension of \mathbb{Q} . This looks very much like the proof of transitivity of degrees for field extensions; but we have only the inequality ' $\leq mn$ ' here since the products $\alpha_i\beta_j$ are not necessarily linearly independent over \mathbb{Q} in this case. (For examples with inequality, consider for example the case when F' = F is a proper extension of \mathbb{Q} .)
- (f) Since $\alpha = \frac{1\pm\sqrt{13}}{2} \in \mathbb{Q}[\sqrt{13}]$, we have $\mathbb{Q}[\alpha] \subseteq \mathbb{Q}[\sqrt{13}]$. The reverse inclusion follows just as easily since $\sqrt{13} = \pm(-1+2\alpha) \in \mathbb{Q}[\alpha]$ implies $\mathbb{Q}[\sqrt{13}] \subseteq \mathbb{Q}[\alpha]$.
- (g) As discussed in class (I think it was Oct 16).
- (h) It is easy to find elements of S that do not commute, e.g. $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$.
- (i) Consider the extension $E = \mathbb{Q}[2^{1/n}] \supseteq \mathbb{Q}$ of degree $[E : \mathbb{Q}] = n$, noting that the polynomial $x^n 2$ is irreducible in $\mathbb{Q}[x]$.
- (j) Consider the splitting field $E \supset \mathbb{Q}$ of x^3-2 , an extension of degree 6 whose automorphism group is $G \cong S_3$, the symmetric group of degree 3. Recall that one of the three elements of order 2 in G is complex conjugation; and this does not commute with the rest of G. Know your examples.