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1. (a) The sixth roots of unity are roots of 2°—1 = (x—1)(z+1)(z?+2+1)(2%—z+1).
Here
e r—1 has as its root the primitive first root of unity, 1;
e 741 has as its root the primitive square root of unity, (3= — 1;
e 224x+1 has as its roots the primitive cube roots of unity, ¢? and ¢*; and
e 22—z+1 has as its roots the primitive sixth roots of unity, ¢ and (°=¢"1=(.
Of course the roots of m(z) are 1i‘ﬁ which are irrational, so m(z) is irreducible
in Q[x].
(b) We have [E : Q] = degm(z) = 2. One explicit choice of basis for E over Q is
{1,¢}; another is {1,/=3}.
(¢) The nontrivial automorphism of E is complex conjugation, 7(x) = Z, which in-
terchanges the two roots of m(x). Of course, G = (1) = {¢,7} is the group of
order 2; so it is both cyclic and abelian.

(d) From ¢ = e™/3 = L(141/=3) we get /=3 =2(-1 € E.
(e) The blue arrows indicate the Galois correspondence:
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2. Given h € G, left-multiplication by h defines a map G — G, g — hg which is bijective.
This map permutes the terms in the sum T'(a), so it fixes the sum. Similarly, it
permutes the factors in the product N(«), thereby fixing the product. Less verbosely,

MT(@) = h( $ g(@)) = 3 hgla) = 3 g'(a) = T(a)
geG g eG

geG
and

MN (@) = b( T g(@) = T ho(@) = TI g'(e) = N(a).

Since T'(«) and N(«) are fixed by every element h € G, they lie in the fixed subfield
of G, which is Q (by the Galois correspondence).

3. Since « is a root of f(x), 2a+1 is a root of f(%*;t) = gm(z) where m(z) =

234322 —52+9. So m(x) is the minimal polynomial of 2a+1 over Q.

The irreducibility of m(x) follows directly from the irreducibility of f(z). (Be-
cause the change of variable z — 251 is invertible, factoring m(z) in Q[z] would be



equivalent to factoring f(z) in Q[z].) Alternatively, the irreducibility of m(x) in Q|x]
follows directly from the fact that m(+1) # 0, so m(x) has no roots in Z, so it has no
roots in Q.)
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Some comments and explanations, provided for your benefit only (not required for
answering #5):

(a) Every subfield of R contains Q.

(b) Consider the extension £ D C given by the field £ = C(x) of rational functions
in an indeterminate z, with complex coefficients. Here [E : C] = co.

(c) This is easy to prove, directly from the axioms.

(d) If @ = 25 then F = Q[a] is an extension of Q of degree 3, with only one auto-
morphism (the identity). Know your examples.

(e) Let {aq,...,am,} be a basis for F' over Q, and let {f1,...,8,} be a basis for
F’ over Q. Then the set of all products «;3; spans an extension field £ O Q
containing both F' and F’. This is an exercise, and we note that [E : Q] < mn so
F is a finite extension of Q. This looks very much like the proof of transitivity
of degrees for field extensions; but we have only the inequality ‘<< mn’ here since
the products o;3; are not necessarily linearly independent over Q in this case.
(For examples with inequality, consider for example the case when F/ = F' is a
proper extension of Q.)

(f) Since a = %ﬁ € Q[v13], we have Q[a] € Q[v13]. The reverse inclusion
follows just as easily since v/13 = +(—142a) € Q[a] implies Q[v/13] C Q[a].
(g) As discussed in class (I think it was Oct 16).

(h) It is easy to find elements of S that do not commute, e.g. [é :11] and H (1)]

(i) Consider the extension E = Q[2'/"] D Q of degree [E : Q] = n, noting that the
polynomial 2™ — 2 is irreducible in Q|x].

(j) Consider the splitting field £ O Q of 23—2, an extension of degree 6 whose
automorphism group is G = S3, the symmetric group of degree 3. Recall that
one of the three elements of order 2 in G is complex conjugation; and this does
not commute with the rest of G. Know your examples.



