

Solutions to Practice Problems 1

- 1. $\alpha^3 = 2 + 3 \cdot 2^{4/3} + 3 \cdot 2^{5/3} + 4 = 6 + 6(2^{1/3} + 2^{2/3}) = 6 + 6\alpha$, so α is a root of $m(x) = x^3 6x 6 \in \mathbb{Z}[x]$. This has no integer roots (any integer root would have to divide 6, but we easily check that $\pm 1, \pm 2, \pm 3, \pm 6$ are not roots of m(x)). So m(x) is irreducible in $\mathbb{Z}[x]$, so it is irreducible in $\mathbb{Q}[x]$: it is the minimal polynomial of α over \mathbb{Q} .
- 2. Since $f(a) = a^4 + 1 > 0$ for all $a \in \mathbb{R}$, f(x) has no real roots and certainly no rational roots. If it factors as a product of two quadratic factors in $\mathbb{Z}[x]$ then any such factorization must have the form $f(x) = (x^2 + ax + b)(x^2 ax + b)$ where $a, b \in \mathbb{Z}$ (in order to avoid terms of degree 3). But then $b = \pm 1$ and $2b a^2 = 0$ so $a^2 = \pm 2$ which has no integer solutions, a contradiction. We conclude that f(x) is irreducible in $\mathbb{Z}[x]$ and also in $\mathbb{Q}[x]$.

Note that $\zeta^4 = -1$ so $\zeta^8 = 1$. We have $\mathbb{Q}[\zeta] \subseteq \mathbb{Q}[\zeta^3] \subseteq \mathbb{Q}[\zeta^9] = \mathbb{Q}[\zeta]$ so $E = \mathbb{Q}[\zeta] = \mathbb{Q}[\zeta^3]$. Similar arguments show $E = \mathbb{Q}[\zeta^5] = \mathbb{Q}[\zeta^7]$. In fact the roots of f(x) are $\zeta, \zeta^3, \zeta^5, \zeta^7$ and so these four roots are conjugates. For $k \in \{1, 3, 5, 7\}$, denote by $\sigma_k : E \to E$ the automorphism which satisfies $\sigma_k(\zeta) = \zeta^k$. Such automorphisms exist since ζ^k (k = 1, 3, 5, 7) are conjugates of ζ . These are all the automorphisms of E since any automorphism $\sigma \in \operatorname{Aut} E$ must map $\zeta \mapsto \zeta^k$ for some $k \in \{1, 3, 5, 7\}$, these being all the roots of f(x); and since ζ generates the extension $E \supseteq \mathbb{Q}, \sigma$ must coincide with σ_k . It is easy to see that $G = \operatorname{Aut} E = \{\sigma_1, \sigma_3, \sigma_5, \sigma_7\}$ is a Klein four-group.

3. The similar example done in class, was the splitting field of $x^3 + x^2 - 2x - 1$, where the map $t \mapsto t^2 - 2$ was used to cycle the three roots. Other than the choice of polynomials, the details are the same and so I give a rather quick sketch of the proof; see the handout for further details. This example is useful for practicing the basic steps in studying Galois extensions.

The polynomial $f(x) \in \mathbb{Q}[x]$ is irreducible in $\mathbb{Q}[x]$. (Otherwise it would have an integer root ± 1 , but f(1) = -1 and f(-1) = 3.) So we have a cubic extension $E = \mathbb{Q}[\alpha] \supset \mathbb{Q}$ where $\alpha \in \mathbb{C}$ is a root of $f(x) = x^3 - 3x + 1$. Then

$$\alpha^{3} = 3\alpha - 1$$

$$\alpha^{4} = 3\alpha^{2} - \alpha$$

$$\alpha^{5} = 3\alpha^{3} - \alpha^{2} = -\alpha^{2} + 9\alpha - 3$$

$$\alpha^{6} = -\alpha^{3} + 9\alpha^{2} - 3\alpha = 9\alpha^{2} - 6\alpha + 1.$$

Using these identities, it is easy to check that $f(2-\alpha-\alpha^2) = 0$, so the polynomial function $g(t) = 2-t-t^2$ permutes the three roots of f(x). None of the roots can be fixed by g, otherwise that root would be a root of a quadratic polynomial g(x)-x = $2-2x-x^2$, which is not divisible by f(x). So g must permute the three roots $\alpha \mapsto$ $\beta \mapsto \gamma \mapsto \beta$. Since $\beta = g(\alpha) \in \mathbb{Q}[\alpha]$, we have $\mathbb{Q}[\beta] \subseteq \mathbb{Q}[\alpha]$. The same argument shows that $\mathbb{Q}[\beta] \subseteq \mathbb{Q}[\alpha] \subseteq \mathbb{Q}[\gamma] \subseteq \mathbb{Q}[\beta]$, so in fact $\mathbb{Q}[\alpha] = \mathbb{Q}[\beta] = \mathbb{Q}[\gamma] = E$. So the map $\sigma : E \to E$ defined by $\sigma(a+b\alpha+c\alpha^2) = a+b\beta+c\beta^2$ (for all $a, b, c \in \mathbb{Q}$) is an automorphism of E. (Warning: Although σ permutes the three roots in the same way that g does, $\sigma(t) \neq g(t)$ for other elements $t \in E$. The map $E \to E, t \mapsto g(t)$ is not even one-to-one, e.g. g(-2) = g(1) = 0. Of course, $\sigma(-2) = -2$ and $\sigma(1) = 1$.) The group $G = \operatorname{Aut} E = \langle \sigma \rangle = \{\iota, \sigma, \sigma^2\}$ is cyclic of order 3 and so we call $E \supset \mathbb{Q}$ a cyclic cubic extension.

- 4. Let $E \supset \mathbb{Q}$ be a quadratic extension, with basis $\{1, \alpha\}$. Since $\alpha^2 \in E$, we have $\alpha^2 = k + \ell \alpha$ for some $k, \ell \in \mathbb{Q}$. After multiplying by the least common multiple of the denominators, we find that α is a root of $ax^2 + bx + c$ for some $a, b, c \in \mathbb{Z}$; so $\alpha = \frac{1}{2a}(-b\pm\sqrt{d})$ where $d = b^2 4ac \in \mathbb{Z}$. Clearly $E = \mathbb{Q}[\alpha] = \mathbb{Q}[\sqrt{d}]$. If $d \not\equiv 0 \mod 4$, we are done. Otherwise $d = 4^k m$ for some $k \ge 1$ and $m \not\equiv 0 \mod 4$. In this case, $E = \mathbb{Q}[\sqrt{d}] = \mathbb{Q}[2^k\sqrt{m}] = \mathbb{Q}[\sqrt{m}]$ and once again, we are done.
- 5. This example is attributed to Daniel Shanks, who was the first person to compute the first 100,000 decimal places of π . I have no idea how he found the remarkable identity in (b).
 - (a) We have

$$\alpha - \sqrt{5} = \sqrt{22 + 2\sqrt{5}}$$

$$\alpha^2 - 2\alpha\sqrt{5} + 5 = 22 + 2\sqrt{5}$$

$$\alpha^2 - 17 = 2(\alpha + 1)\sqrt{5}$$

$$(\alpha^2 - 17)^2 = 20(\alpha + 1)^2$$

$$\alpha^4 - 34\alpha^2 + 289 = 20\alpha^2 + 40\alpha + 20$$

$$\alpha^4 - 54\alpha^2 - 40\alpha + 269 = 0,$$

so α is a root of $m(x) = x^4 - 54x^2 - 40x + 269 \in \mathbb{Q}[x]$. You can use the usual procedure to show that m(x) is irreducible in $\mathbb{Q}[x]$; but let me show you a trick that simplifies the arithmetic. The substitution y = 4x + 3, i.e. $x = \frac{y-3}{4}$, allows us to rewrite m(x) = 256f(y) where $f(y) = y^4 + 3y^3 - 4y - 1$. Now m(x) is irreducible in $\mathbb{Q}[x]$ iff f(y) is irreducible in $\mathbb{Q}[y]$. (Any nontrivial factorization $m(x) = m_1(x)m_2(x)$ in $\mathbb{Q}[x]$ gives a nontrivial factorization $f(y) = f_1(y)f_2(y)$ in

 $\mathbb{Q}[y]$, and conversely.) It suffices to show that f(y) has no nontrivial factorization in $\mathbb{Z}[y]$. First, f(y) has no linear factors in $\mathbb{Z}[y]$, otherwise it would have a root in \mathbb{Z} dividing 1; but both f(1) = -1 and f(-1) = 1 are nonzero, so this cannot happen. If f(y) factors into quadratic factors in $\mathbb{Z}[y]$, then

$$f(y) = y^4 + 3y^2 - 4y - 1 = (y^2 + ay - 1)(y^2 + by + 1)$$

for some $a, b \in \mathbb{Z}$. From the coefficients of y^3 and y, we get a + b = 3 and a-b = -4. Adding these equations gives 2a = -1, which is not possible for $a \in \mathbb{Z}$. This contradiction proves that $f(y) \in \mathbb{Q}[y]$ and so $m(x) \in \mathbb{Q}[x]$ is irreducible. So m(x) is the minimal polynomial of α over \mathbb{Q} .

(b) I will denote the given expression by $\theta = \sqrt{u} + \sqrt{v + 2\sqrt{w}}$ where

$$u = 11 + 2\sqrt{29}, \qquad v = 16 - 2\sqrt{29}, \qquad w = 55 - 10\sqrt{29}.$$

The fact that $u, v, w \in \mathbb{Q}[\sqrt{29}]$ will be helpful in these calculations. In particular, note that uw = 25. My strategy is to show that θ has the same minimal polynomial over \mathbb{Q} as α . Using calculus, we see that m(x) has four real roots, one on each of the intervals [-7, -6], [-3, -2], [1, 2], [7, 8]. Numerical estimates show that $\alpha, \theta \in [7, 8]$, so they are both equal to the largest root of m(x). This gives $\alpha = \theta$. Now

$$\begin{aligned} \theta - \sqrt{u} &= \sqrt{v} + 2\sqrt{w} \\ \theta^2 - 2\theta\sqrt{u} + u &= v + 2\sqrt{w} \\ \theta^2 + u - v &= 2\theta\sqrt{u} + 2\sqrt{w} \\ (\theta^2 + u - v)^2 &= (2\theta\sqrt{u} + 2\sqrt{w})^2 \\ \theta^4 + 2(u - v)\theta^2 + (u - v)^2 &= 4u\theta^2 + 8\theta\sqrt{uw} + 4w \\ \theta^4 + 2(u - v)\theta^2 + (u - v)^2 &= 4u\theta^2 + 40\theta + 4w \\ \theta^4 + [2(u - v)-4u]\theta^2 - 40\theta + [(u - v)^2 - 4w] &= 0 \\ \theta^4 - 54\theta^2 - 40\theta + 269 &= 0. \end{aligned}$$

Here we have carefully calculated the coefficients using arithmetic in $\mathbb{Q}[\sqrt{29}]$; and it follows that $\theta = \alpha$ as explained above.

6. From $m(x) = x^3 - 7x^2 + 5x - 3 = (x - \alpha)(x - \beta)(x - \gamma)$ we obtain $\alpha + \beta + \gamma = 7, \qquad \alpha\beta + \alpha\gamma + \beta\gamma = 5, \qquad \alpha\beta\gamma = -3.$

This answers (a) and (b). As for (c), we have

$$\alpha^{2} + \beta^{2} = \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma) = 7^{2} - 2 \cdot 5 = 39.$$

The fact that all these values are rational follows from the fact that each of the expressions is fixed by the Galois group of the polynomial (since permuting α, β, γ does not change them). The fact that they are all integers follows from knowing a little more algebra beyond what we are covering in our course: Not only are α, β, γ

algebraic numbers (i.e. roots of nonzero polynomials with integer coefficients), they are in fact *algebraic integers* (i.e. roots of *monic* polynomials with integer coefficients).

7. This exercise uses the isomorphism $E = \mathbb{Q}[\alpha]$ to a subring of the 3×3 rational matrices, where α is a root of $m(x) = x^3 + x^2 - 2x - 1$. As studied in class, m(x) has three roots α, β, γ which are permuted cyclically by $t \mapsto t^2 - 2$. From

$$x^{3} + x^{2} - 2x - 1 = (x - \alpha)(x - \beta)(x - \gamma)$$

we obtain

$$\alpha + \beta + \gamma = -1, \qquad \alpha \beta + \alpha \gamma + \beta \gamma = -2, \qquad \alpha \beta \gamma = 1.$$

The isomorphism from E to a subring of $\mathbb{Q}^{3\times 3}$ maps α, β, γ to a triple of matrices A, B, C satisfying exactly the same relations. You can find one of the three matrices using a companion matrix for m(x), as I have explained earlier; then generate the other two using the cyclic action of $t \mapsto t^2 - 2$ on the roots. One possible solution is

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix}, \qquad B = \begin{bmatrix} -2 & 1 & -1 \\ 0 & 0 & -1 \\ 1 & -1 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & -1 & 0 \\ -1 & -1 & -1 \\ -1 & 0 & -1 \end{bmatrix}$$

- 8. (a) $i^i = (e^{(2n+\frac{1}{2})\pi i})^i = e^{-(2n+\frac{1}{2})\pi}$ for $n \in \mathbb{Z}$. Interestingly, all possible values of i^i are real.
 - (b) The values $\alpha = \sqrt{2}^{\sqrt{2}}$ and $\beta = \sqrt{2}$ are irrational. (By the Gelfond-Schneider Theorem, α is in fact transcendental.) Also $\alpha^{\beta} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^2 = 2$ is rational.
- 9. First observe that $\alpha = \pi^2 1$ is transcendental. This is because any polynomial in α (with rational coefficients) is a polynomial in π (with rational coefficients). Even more bluntly, if a nonzero polynomial $g(x) \in \mathbb{Q}[x]$ of degree $n \ge 1$ satisfies $g(\alpha) = 0$, then $f(\pi) = 0$ where $f(x) = g(x^2 1)$. And deg $f(x) = 2n \ge 2$, so this is also a nonzero polynomial. This is a contradiction.

Next, suppose $\sqrt{\alpha}$ is algebraic; and let $h(x) \in \mathbb{Q}[x]$ be a nonzero polynomial having $h(\sqrt{\alpha}) = 0$. The polynomial f(x) = h(x)h(-x) is also nonzero (its degree is twice the degree of h(x)) and f(x) is an even polynomial (i.e. f(-x) = f(x)). This means that every term appearing in f(x) has even degree, i.e. $f(x) = p(x^2)$ for some nonzero polynomial $p(y) \in \mathbb{Q}[y]$. And $p(\alpha) = f(\sqrt{\alpha}) = h(\sqrt{\alpha})h(-\sqrt{\alpha}) = 0$, a contradiction. So $\sqrt{\alpha} = \sqrt{\pi^2 - 1}$ is also transcendental.

We don't actually have to be this clever. There are much easier ways to answer the question, after we cover some more basic results. An extension $E \supseteq F$ is algebraic if every $\alpha \in E$ is algebraic over F (i.e. there exists a nonzero $f(x) \in F[x]$ such that $f(\alpha) = 0$). Every finite extension is algebraic. And given a tower of extensions $E \supseteq K \supseteq F$, the extension $E \supseteq F$ is algebraic iff both of the extensions $E \supseteq K$ and $K \supseteq F$ are algebraic. And given an element α in some extension of F, the element α is algebraic over F iff the extension $F(\alpha) \supseteq F$ is algebraic. These facts are ... well, not too hard to prove. Now consider $\beta = \sqrt{\pi^2 - 1} = \sqrt{\alpha}$ where $\alpha = \pi^2 - 1$. Then $\beta \in K(\beta) \supseteq K \supseteq \mathbb{Q}$ and $\pi \in K(\pi) \supseteq K \supseteq \mathbb{Q}$ where $K = \mathbb{Q}(\alpha)$. The extension $K(\pi) \supseteq \mathbb{Q}$ cannot be algebraic since it contains a transcendental element π . But $K(\pi) \supseteq K$ is algebraic. In particular, the extension $K(\pi) = \mathbb{Q}(\pi) \supseteq \mathbb{Q}$ cannot be algebraic.

10. Numerical evaluation of the sequence of approximations $\sqrt{2}$, $\sqrt{2}^{\sqrt{2}}$, $\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}$, ... leads us to conjecture that the limit is 2. The decimal approximations also lead us to believe that the sequence is increasing, which suggests the following plan of attack.

Define $f(x) = 2^{x/2} = \sqrt{2}^x$. Whenever 0 < x < 2, we have 0 < x < f(x) < 2. (Use $f(x) = 2^{x/2} < 2^1 = 2$. Also by the first derivative test, the function $g(x) = \frac{\ln x}{x}$ is increasing on the interval (0, e], so $\frac{\ln x}{x} < \frac{\ln 2}{2}$ and $x = e^{\ln x} < e^{(x \ln 2)/2} = f(x)$.) Our sequence of approximations is $f(1), f(f(1)), f(f(f(1))), \ldots$ which is an increasing sequence of real numbers less than 2. So it converges to a real number $\alpha \leq 2$. This number satisfies $\alpha = f(\alpha)$, so $\ln \alpha = \ln f(\alpha) = \frac{\alpha \ln 2}{2}$, i.e. $g(\alpha) = g(2)$. Again using the fact that g(x) is increasing on the interval (0, e], this forces $\alpha = 2$. Of course this value is rational.

11. The required value α satisfies $\alpha = \sqrt{5+\sqrt{5-\alpha}}$, so $\alpha^2 = 5+\sqrt{5-\alpha}$, $\alpha^2-5 = \sqrt{5-\alpha}$ and $\alpha^4-10\alpha^2+25 = 5-\alpha$. So α is a root of

$$x^{4} - 10x^{2} + x + 20 = (x^{2} + x - 5)(x^{2} - x - 4).$$

Thus $\alpha \in \left\{\frac{1}{2}\left(-1\pm\sqrt{21}\right), \frac{1}{2}\left(1\pm\sqrt{17}\right)\right\}$. However, it is evident from the original expression for α that we must have $\alpha > \sqrt{5}$. Only one of the four roots satisfies this requirement, giving $\alpha = \frac{1}{2}\left(1+\sqrt{17}\right)$. This value is algebraic of degree two (a quadratic irrational) with minimal polynomial $x^2 - x - 4$ over \mathbb{Q} .

Remarks. This identity for α is unexpected, much as Shanks' identity in #5(b) is unexpected. An important point here is that after finding a monic polynomial in $\mathbb{Z}[x]$ having α as a root, we would usually expect this to be the minimal polynomial. This example reminds us, however, not to jump too quickly to this conclusion.

12. This example relates to straightedge-and-compass constructions, which we will discuss in class. We have a tower of extension fields

$$E_n \supseteq E_{n-1} \supseteq \cdots \supseteq E_2 \supseteq E_1 \supseteq E_0 = \mathbb{Q}$$

where $E_i = E_{i-1}[a_i\sqrt{b_i}]$ for i = 1, 2, ..., n. Since $a_i\sqrt{b_i}$ is a root of the quadratic polynomial $x^2 - a_i^2 b_i \in E_{i-1}[x]$, we have $[E_i : E_{i-1}] \leq 2$. By transitivity of degrees of extensions, $[E_n : \mathbb{Q}] = 2^k$ for some $k \in \{0, 1, 2, ..., n\}$. Now consider the element $\beta \in E_n$ defined by $\beta = \sum_{i=1}^n a_i\sqrt{b_i}$. Since $E_n \supseteq \mathbb{Q}[\beta] \supseteq \mathbb{Q}$, $[\mathbb{Q}[\beta] : \mathbb{Q}]$ must divide $[E_n : \mathbb{Q}] = 2^k$. However, $[\mathbb{Q}[\alpha] : \mathbb{Q}] = 3$, so $\beta \neq \alpha$.