Fields

Bookt

Fields

Let *F* be a set containing distinct elements called 0 and 1 (thus $0 \neq 1$). Suppose addition, subtraction, multiplication and division are defined for all elements of *F* (except division by 0 is not defined). Thus a + b, a - b, ab, $\frac{a}{d} \in F$ whenever $a, b, d \in F$ and $d \neq 0$. Define -a = 0 - a.

If the following properties are satisfied by *all* elements $a, b, c, d \in F$ with $d \neq 0$, then F is a field.

a + b = b + a	a + (b + c) = (a + b) + c	ab = ba
a + 0 = a	a(bc) = (ab)c	1a = a
a + (-a) = 0 $a + (-b) = a - b$	a(b+c) = ab + ac	$\frac{a}{d}d = a$

$Q^{2\times 2} = \{2\times 2 \mod \alpha\} = \{[a, b]: a, b, c, d \in \Omega\}$ is not a field.
$0 = \begin{bmatrix} 0 & 0 \end{bmatrix}, 1 = \begin{bmatrix} 0 & 1 \end{bmatrix}$ identify
A = A + D = A, AI = A = IA
[00] has no inverse. A [00] = I has no solution for A.
Moreorer, AB = BA in general.
O ²²² is a (non-commutative) ring with identity.
It has a subring $D = S[o^2d]$: a, $d \in QS$ is a commutative subring with identity.
D' 1 13 not a treva since it has non-more a field can reser have zero divisors
(If I is a zero divisor then cd=0 where cd =0 so (E) = c =0 contradiction)
$- \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
for a committative ring K with identity 0.1 = 7 a
An are all of a commutative ring with identity having no zero divisors but not a field
(division fails in general) is Z
$\frac{1}{2} = \frac{2^{2}}{2} = \frac{1}{2} = $
Eq. F= { [26 a] : abe QSC Q is a subring touraining I to is - father atte
If $\begin{vmatrix}a & b \end{vmatrix} \neq \begin{bmatrix}a & b \\ 0 & 0 \end{vmatrix}$ then $\begin{bmatrix}a & b \\ 2b & a \end{bmatrix} = \frac{1}{2^2 + 2^2} \begin{bmatrix}a & b \\ 2b & a \end{bmatrix}$ (Note: $a^2 + 2b^2 \neq 0$ since $\sqrt{2} \neq 0$)
Where is F a commitative subring ? Elements of F have the form
of a by = aI+bS where I=[0], S=[2] so F= {aI+bS : a,be Q} is the span of {I.S}
in O ²²² (Fis a 2-dimensional subspace of Q ²²² a 4-dimensional vector space).

$(aI+bS)(cI+dS) = acI + (ad+bc)S + bdS^{2} = (cI+dS)(aI+bS)$ = (ac+ 2bd)I + (ad+bc)S	$S^{2} = \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} = 2\mathbf{I}$	
Compare: $K = \mathbb{Q}[I\overline{z}] = \{a+b\overline{z} : a, b \in \mathbb{Q}\}$ is a field. $(a+b\overline{z}) + (c+d\overline{z}) = (a+c) + (b+d)\overline{z}$ $(a+b\overline{z})(c+d\overline{z}) = ac + (ad+bc)\overline{z} + 2bd = (ac+2bd) + (ad+bc)\overline{z}$ $Note: F \cong K$ (they are isomorphic) An explicit isomorphism $\phi: K \rightarrow F$ is given by $\phi(a+b\overline{z}) = [aba \phi is bijective\phi(x+q) = \phi(x) + \phi(q)\phi(xy) = \phi(x) \phi(y)$)= al+6S.	
Similarly $\left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a, b \in \mathbb{R} \right\} \subset \mathbb{R}^{2^{n}}$ is a subring isomorphism Au isomorphism $\mathbb{C} \longrightarrow \left\{ \begin{bmatrix} a & b \\ -7 & 0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$ is $a+b$:	2ic to C. $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ $(a_1b \in \mathbb{R}).$	