Fields

Fields

Let F be a set containing distinct elements called 0 and 1 (thus $0 \neq 1$). Suppose addition, subtraction, multiplication and division are defined for all elements of F (except division by 0 is not defined). Thus $a + b$, $a - b$, ab , $\frac{a}{d} \in F$ whenever $a, b, d \in F$ and $d \neq 0$. Define $-a=0-a$.

If the following properties are satisfied by all elements a, b, c, $d \in F$ with $d \neq 0$, then F is a field.

Q C R C C
countable meanwhale mean-table $Q = \{q_1 q_2 q_3 q_4 \}$ $9+9x$ $9+9x$ $9+9x$ A = {algebraic munbers} $Q \subset A \subset C$ $a_2 + a_1 x$ $a_3 + a_2 x$ $a_2 + a_3 x$ QCANR CRC countable meourtable. $-3 - 2 - 1 0 1 2$ Q[x] is a countably intende ving Elements of $\mathbb{Q}(\pi) \subset \mathbb{R}$ look like $63.8\pi - 17\pi + 9$ $42\pi^2 + 119\pi + \frac{163}{648}$ Azr²+11977+ 03
Compare: Q(e) CR, another countable subfield of R.
Actuelly Q(e) = Q(r) du isomorphism is f(e) -> f(r) where f(r) = Q(r)
(x) leing an indeterminate ie. an algebraic $\mathbb{Q}(x) \longrightarrow \mathbb{Q}(x)$ evaluation $\mathbb{Q}(\kappa) \longrightarrow \mathbb{Q}(\epsilon)$ docan't quite voile cg. the surge of $\frac{x^3 + 7x^2 - 3}{x^2 - 2} \in \mathbb{Q}(\kappa)$ is undefined:
J all well-defined ring homomorphisms. $\mathbb{Q}(\mathbf{x}) \longrightarrow \mathbb{Q}(\sqrt{2})$ $B_{x}t \otimes [x] \longrightarrow \mathbb{Q}[\pi]$ the evaluation Q[x] -> Q[e] $Q[x] \longrightarrow Q[x]$ π , $e, \sqrt{2}$...

If ϕ : $R \rightarrow S$ where RS are rings, we say ϕ is a ring homomorplism if ω RS are rigs,
 $\phi(a+b) = \phi(a) + \phi(b)$
 $\phi(ab) = \phi(a)\phi(b)$ $\phi(a+b) = \phi(a) + \phi(b)$? For all $a,b \in \mathbb{N}$
We don't necessarily require $\phi(1) = 1$; and in general the rings RS may not have identity. We don't necessarily regard $\varphi(t) = 1$ and θ are eight consider only homomorphisms F R, S are rings with identity ($1_e \in$
of rings with identity i.e. $\phi(1_p) = \phi(1_s)$. * Suppose F K are fields. If ϕ $F \rightarrow K$ is a ring homomorphism then either
 ϕ (i) $\phi(F) = \{0\}$ i.e. $\phi(a) = e$ for all $a \in F$ or (trivial)
 ϕ (i) $\phi(F) = \{0\}$ i.e. $\phi(F) \subseteq K$ is a substitute isomorphic to F. (i) $\phi(F) = \{o\}$ ϕ (a) = ϕ (a) + ϕ (b) 3
 ϕ (a) = ϕ (a) ϕ (b) 3

require ϕ (l) = 1; and is

fa identity (1, $\in R$, 1, \in

ie ϕ (k) = ϕ (k))

ie ϕ (k) = \circ for all at f

ie ϕ (f) \subseteq K is a s σ (trivial) A_n B_n C_n $D(f)$ = $\{o\}$ i.e. $\phi(e) = o$ for all as F_n or B_n $D(x)$ is one-to-one i.e. $\phi(F) \subseteq K$ is a subfield isomorplie to F_n
Any hominoplies is either frivial or it has the form $Q(x) \longrightarrow Q(a)$, $f(x) \mapsto Q(x)$ $P(x)$ is one-to-one i.e. $P(F)$ = $F(x)$ substitution of the form (R(x) -> Q(a), $P(x)$ -> f(a) is an evaluation
 $Q(x)$ -> R is either frivial or it has the form (R(x) -> Q(a), $P(x)$ -> f(a) is an evaluation ring $Q(x) \rightarrow \mathbb{R}$ is either trivial or it was me $x \in \mathbb{R}$.
at some transcendantal number $a \in \mathbb{R}$.
we have homomorphisms $Q[x] \rightarrow C^{n \times n}$ (nxn complex natries)
where we evaluate at a matrix $A \in C^{n \times n}$, i.e. $f(x) \mapsto f(A)$ $f_{subfield} = \frac{1}{100}$
 $\frac{1}{100}$
 $\frac{1}{1$ # In ^a field ^F , every ideal is either ³⁰³ or F .
5 An anomorphism of ^a field ^F is automorphism of a field F is an isomorphism $\phi: F \rightarrow F$. Ig bijective with
(i) Automorphisms of QCE] ? We want $\phi: Q(F) \rightarrow Q(F)$ bijective with $\phi(a + b) = \phi(a) + \phi(b)$, $\phi(ab) = \phi(a) \phi(b)$. · The identity $\phi(x) = x$ for all $x \in \mathbb{Q}[\sqrt{x}]$ Conjugation platte) = a-bie for all a, be Q. (This is algebraic conjugation, not complex

The conjugation $\phi \in$ Ant Q[\bar{z}] defined by ϕ (exote) = $a - b\bar{c}$ (a, $b \in \mathbb{Q}$) is badly discontinuous L a defined by p (expert) = $a-bE$ (a,6 ϵ)

L $L = \frac{1}{2}$ and $\frac{1}{2}$ an $-2\sqrt{2}$ $x = \frac{1}{\sqrt{2\pi}} \int_{0}^{\frac{\pi}{2}} \frac{e^{-x}}{\sqrt{x^2 - x^2}} dx$ The conjugation $\psi \in A + \mathbb{Q}$ (152) defined by ψ (1616) = ψ = ψ (6.66) is body discontinues.

 ψ : \mathbb{Q} [\mathbb{Z}] \mathbb{Q} [\mathbb{Z}] ψ = ψ - \mathscr{L} is continuous $L: \mathbb{Q}[\sqrt{z}] \rightarrow \mathbb{Q}[\sqrt{z}]$ Art QIE] defined by ϕ (erbE) = α -
 $\sqrt{2}$
 $\sqrt{2}$ - $\sqrt{2}$
 $\sqrt{2}$ - $\sqrt{2}$
 $\sqrt{2}$ - $\sqrt{2}$
 $\sqrt{2}$ - $\sqrt{2}$ $\overrightarrow{AB} = \overrightarrow{e}-\overrightarrow{b} = \overrightarrow{c} - \overrightarrow{b} = \overrightarrow{c} - \overrightarrow{c} = \overrightarrow{$ $R(x) = \{ \text{ radical Functions} \}$ with real coefficients is a field. $R(x) = \{$ rational functions of x with real continuous functions" $R \rightarrow R$ Hicroads } is a field R-> R re replace "rational transiens" (1) $\{$ functions $R \rightarrow R$ }
 $\{$ continuous functions $R \rightarrow R$ } are rings with zero divisors so they
are not fields. are not fields.
Commitative rings with identi
under pointwise multiplication. $\frac{1}{\sqrt{1+\frac{1}{2}}}$ $f(x)$ = S^{x} if $x \ge 0$
 S^{x} if $x \le 0$ $x₀$ $f_1^{\prime}f_2^{\prime} = 0$ but $f_1^{\prime}f_2^{\prime}$ are vonzers functions.

How do we check flat $f(x) \in \mathbb{Q}[x]$ is irreducible (i.e. in $\mathbb{Q}[x]$)? eg . How do we check -
 $g = f(x) = x^4 + x^2 + x+1$ 1 implies $b = d = \pm 1$. If $b = d = 1$ then If $f(x) = (x^2 + ax + b)(x^2 + cx + d)$ then implies $b = d = \pm 1$. It $b = d = 1$ then
 $f(x) = (x^2 + ax + 1)(x^2 - ax + 1)$ has no x term, a contradiction. degree 2 degree 2 $f(x) = (x + a)$
in $\mathbb{Z}[x]$ in $\mathbb{Z}[x]$ If $b = d = -1$ then a, b, c , $d\epsilon \ge \frac{d\epsilon}{d\epsilon} = \frac{d^2\epsilon}{f(x)} = \frac{f(x)}{f(x)} = \frac{$ as no x term, a contrain
1) has no x term again $If(x) = (x + a)(x^2 + bx^2 + cx + d)$ them $d=r$ so $a = d = \pm 1$, $(b=1)$?
 $b=1$ $+(b=1)$
 $(a=1)$ $(a=1)$ $(a=1)$ $(a=1)$ $(a=1)$
 $(a=1)$ $(a=1)$ $(a=1)$
 $(a=$ + a)(x + bx + cx + d
where a,b, c,d ∈ Z If $f(x) = (x + a)(x + bx + c x + a)$ then $al = 1$ so $a = a = \pm 1$, but $f(c) =$
where $a, b, c, d \in \mathbb{Z}$
 S_0 $f(x)$ is irreducible in $\mathbb{Z}[x]$; so $f(x)$ is irreducible also in $\mathbb{Q}[x]$. why do we care about automorphisms of fields ? Historically the study of fields originated in questions about finding roots of polynomials. this torically the study of fields originated in quest The roots of ax^2+bx+c $(a\neq 0)$ are $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ explicitly using formulas of a,b,c,d using $+,-, x,$ $x + c$ (a=0) are $\frac{2a}{2}$
; of $ax^3 + bx^2 + cx + d$ are given explicitly
 \div and extracting square roots and cube roots. roots and we have some such formula exists Similarly for polynomials of degree ⁴ . Galois theory gives the connection between fields and Similarly for plynomials of degree 7 But to degree 75, no such rection between Field
The reason is found in group theory. Galois freery gives the connection between Field
groups. Given a polynomial $f(x) = xF a_n x^n + \cdots + q x * a_n \in$ Une reason is solutional $f(x) = x + a_n x^{n+1} + \cdots + a_n + a_n \in \mathbb{C}$ (if $f(x) = (x - r_1)(x - r_2) \cdots (x - r_n)$

sups. Given a polynomial $f(x) = x + a_n x^{n+1} + \cdots + a_n + a_n \in \mathbb{C}$ (if $f(x) = (x - r_1)(x - r_2) \cdots (x - r_n)$).
 $f(x) = \frac{r_1}{r_1} + \frac{r_2}{r_2} + \cd$ κ , κ (in particular G is a order ^a !

