

Fig. at =
$$\sqrt{2+\sqrt{2}}$$
 The minimal page of a over Q is $f(x) = x^4 - 4x^2 + 2 \in Q(x^2)$.

The minimal page of a over Q is $f(x) = x^4 - 4x^2 + 2 \in Q(x^2)$.

The mosts of $f(x)$ is irreducible in $Q(x)$ so it really is the min. page of a over Q is $x^2 - 2 = \sqrt{2}$.

At $x^2 - 4x^2 + 4 = 2$.

At $x^2 - 4x^2 + 2 = 0$.

At $x = \sqrt{2+\sqrt{2}}$.

At x

d has min poly. x3-2 ∈ Q[x] which is irreducible $q = 3/2 = 2^{1/3}$ Compare G= (t) E=Q[Q] Q is an In R[x], $f(x) = x^2 - 2 = (x - \alpha)(x^2 + \alpha x + \alpha^2)$ extension of degree E:Q7 = 3 with basis 1, 0, 0 = 3/4 (0=2) T(0+6/2) = 0-6/2 G = Aut E = {1, t}, quadratic extension Degree 2 extension: (ie. F is an intermediate field) the transitivity of degrees tells us [E: Q] = [E:F][F:Q] quittic If [F:Q] = 1 then {1} is a basis for Force Q so F = {al : a ∈ Q} If [E: F] = 1 then (similarly) E= F. More generally if E2F is an extension of prime degree p= [E:F] Then the only intermediate extensions are E and F. What are the automorphisms of $E = Q[\alpha]$, $\alpha = 3/2$? If $\phi \in Aut E$ then $\phi(\alpha) = \phi(\alpha) = \phi(\alpha) = 2$

In C, every poly,
$$f(x) \in C[X]$$
 of degree x factors as $f(x) = a(x-r)(x-r)$. $(x-r_x) = a(x-r_x)(x-r_x)$. $(x-r_x) = a(x-r_x)(x-r_x)$. Where $f(x) = a(x-r_x)(x-r_x)$ is the second $f(x) = a(x-r_x)(x-r_x)$. The second $f(x) = a(x-r_x)(x-r_x)$ is a second $f(x) = a(x-r_x)(x-r_x)$. The second $f(x) = a(x-r_x)(x-r_x)$ is a second $f(x) = a(x-r_x)(x-r_x)$. The second $f(x) = a(x-r_x)(x-r_x)$ is a second $f(x) = a(x-r_x)(x-r_x)$. The second $f(x) = a(x-r_x)(x-r_x)$ is a second $f(x) = a(x-r_x)(x-r_x)$. The second $f(x) = a(x-r_x)(x-r_x)$ is a second $f(x) = a(x-r_x)(x-r_x)$. The second $f(x) = a(x-r_x)(x-r_x)$ is a second $f(x) = a(x-r_x)(x-r_x)$. The second $f(x) = a(x-r_x)(x-r_x)$ is a second $f(x) = a(x-r_x)(x-r_x)$. The second $f(x) = a(x-r_x)(x-r_x)$ is a second $f(x) = a(x-r_x)(x-r_x)$. The second $f(x) = a(x-r_x)(x-r_x)(x-r_x)$ is a second $f(x) = a(x-r_x)(x-r_x)(x-r_x)$. The second $f(x) = a(x-r_x)(x-r_x)(x-r_x)$ is a second $f(x) = a(x-r_x)(x-r_x)(x-r_x)$. The second $f(x) = a(x-r_x)(x-r_x)(x-r_x)(x-r_x)$ is a second $f(x) = a(x-r_x)(x-r_x)(x-r_x)(x-r_x)$. The second $f(x) = a(x-r_x)(x-r_x)(x-r_x)(x-r_x)(x-r_x)(x-r_x)$ is a second $f(x) = a(x-r_x)$

Follow links on course website instructional videos
$$\rightarrow$$
 complex numbers instructional videos \rightarrow complex numbers \rightarrow consider $f(x) = \frac{1}{x^2 - 6x + 35}$.

This function has polar at $x = 3 \pm 4i \in C$
with $|3 \pm 4i| = 5$

By the Binomial Theore.

 $(1+i)^{11} = 1 + 11i - 55 - 165i + 30 + 462i - 462 - 330i + 165 + 55i - 11 - i = 22 \pm 22i$

Much feature way to evaluate powers $z'' = (x + iy)^{2} = x^{2} + hx^{2}y^{2} + \cdots + iy^{2}$

(Binomial Theorem 14: $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$

The roots of $z = re^{iy}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$

All complex $z = re^{iy}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$

All complex $z = re^{iy}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$

All complex $z = re^{iy}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$
 $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2$

Cake roots of with in
$$C: 1, \omega, \omega^2 \ge \overline{\omega}$$

$$\omega = e^{\frac{2\pi i}{3}} = \frac{-1+\overline{13}}{2} = \frac{-1}{2} + \frac{\pi}{12} :$$

$$\omega^2 + \omega + 1 = 0$$

$$\omega = \omega^2 + \omega + 1 = 0$$

$$\omega = \omega^2 + \omega + 1 = 0$$

$$\omega = \omega^2 + \omega + 1 = 0$$

$$\omega = \omega^2 + \omega + 1 = 0$$

$$\omega = \omega^2 + \omega^2$$

10130= 3= (5.c) $E = Q[\alpha_1, \alpha_2, \alpha_3] = Q[\alpha_1, \omega]$ Hasse diagram 0 T= To Hasse 2 2 2 2 Q (w₂) Q (w₂) Q (w₂) 3 3 3 of surgroups OT = 102 Double times indicate PG= Att E' Using right-to-left composition A subgroup $H \leq G$ is normal if its left and right assets agree ie. gH = Hg for all $a \in G$. OT = (132)(23) = (13) VT = (123)(23) = (12) Eg. in G=S3, H=(0) = ((123)) is normal. eg. (12)H= (12){(), (123), (132)} = {(12), (23), (13)} T=(23) (12)(123) = (1)(23) H(12) = {(), (123), (132)} (12) = {(12), (13), (23)} E is the splitting field of LEY is a subgroup of 6 which is not normal in G. $\chi^{3}-2 = (\chi-\alpha)(\chi-\chi\omega)(\chi-\chi\omega^{2})$ $E = Q[\alpha, \alpha \omega, \alpha \omega^2] = Q[\alpha, \omega]$ $(13) \langle \tau \rangle = (13) \{ (1), (23) \} = \{ (13), (132) \}$ <t>(13) = {(), (23)} (13) = {(13), (123)} of degree [Q[v]:Q]=3 is not normal The extension Q[a] > Q since the min. poly of a over Q is x3-2 with Q(x) confaining only one of the three roots of x3-2.

In $E = \Omega[\alpha,\omega]$ the splitting field of $\alpha^2 - 2 = (x-\alpha)(x-\alpha\omega)(x-\alpha\omega^2)$, can we find a single element $\beta \in E$ generating E i.e. $E = \Omega[\beta] = \beta Q_1 + Q_2 + Q_3 + Q_4 + Q_5 +$ of dinension 2, 3, 3, 3 respectively. In R? can R? be a mion of firstely many proper subspaces? No because each proper subspace of TR? los only dimension = 2 so it covers a slice of the unit bell of volume 0. A finite union of proper subspaces covers zero volume of the mit bell; it can never cover the total volume of the mit bell; it can never cover the total volume of the mit bell; In Q^3 , i.e. points of R^3 with rational coordinates, can $Q^3 = U_1 \vee U_2 \vee U_2 \vee \dots \vee U_k$ with $U_i \leq Q^3$ proper subspaces? The volume of Q^3 (as a subset of R^3) is zero. D3 = { V, V2, V3, V4, ...} is countably infinite.

Let E>0. We will show that the volume of Q3 is at most E.

Take a ball B. of radius small enough centered at V. such that its volume is less than 2 (i= 1,23,9.)

$$\bigcup_{B}^{\infty} B_{A} \quad \bigcup_{B}^{\infty} B_{A} \quad \bigcup_{B}^{\infty}$$

Try another approach. Suppose $\mathbb{Q}^3 = U_1 \vee U_2 \vee \cdots \vee U_k$, $U_i \leq \mathbb{Q}^3$ proper subspaces, so dim $U_i \in \{0,1,2\}$. Take a line $I \subset \mathbb{Q}^3$ not through the origin. Then I is contained in at most one of the subspaces U_i . With careful choice we may assume I is not contained in any I_i . (Not hard.) Each I_i intersects I_i at most one point. This is a contradiction.

Galois theory handout: ignore "separable" for now Example of an extension EDQ of degree 3 with 6: Aut E of order 3? $f(x) = q^2 + x^2 - 2x - 1 \in \mathbb{Q}[x]$ is irreducible $f(x) = (x-\alpha)(x-\beta)(x-\gamma)$ where $\alpha + \alpha^2 - 2\alpha - 1 = 0$ $y^3 = 1.4.2\alpha - y^2$ a = a + 22 = a3 = d+2a2 - (1+2a-42) = -1-a+30 has exactly d = 3+5x-4a2 x = -4-5x+9a2 3 symmetries Check that it is also a nost of f(x) f(x2-2) = (x2-2) + (x2-2) - 2(x2-2) -1 = 0 after collecting terms, so x2-2 ∈ {x, p, y} Can $\kappa^2 = \alpha$? No. If κ is a root of $f(x) = x^3 + x^2 - 2x - 1$ and a root of $g(x) = x^2 - x - 2$ then α is a root of gcd (f(x), g(x)) = r(x)f(x) + s(x)g(x) by Euclid's Algerithm.

which is a factor of f(x) of degree less than 3, a contradiction.

WLOG $\beta = \alpha^2 - 2$. Now $\beta^2 - 2$ is also a root of f(x) by the same reasoning, so $\beta^2 - 2 \in \{\alpha, \beta, T\}$ As before, B-2 + B. If B-2 = or then (x-2)-2= or = or + 10+4-2= or d- 4x-a+2=0 but $g(x^3+x^2-2x-1)$, $x^4-4x^2-x+2)=1$ Contradiction Beller: $-1-4+3a^2-4a^2-u+2$: So $g^2-2=\gamma$. Now $\chi^2-2=\alpha$. Indeed $1-2\alpha-u^2=0$ η-2 = (β-2)-2 = ((x-2)-2)-2 = α. The field $E = \mathbb{Q}[x] = \{a + bx + co^2 : a,b,c \in \mathbb{Q}\}$ of legree $[E:\mathbb{Q}] = 3$ (a cubic extension) has entomorphism group $G = Aut E = \langle \sigma \rangle = \{\iota, \sigma, \sigma^2\}$, cyclic of order 3. The map x -> x-2 gives a cyclic permitation 5: a -> p -> x.

NOVEMBER 2024

SUN	MON	TUE	WED	THU	FRL	SAT
27	28	29	30	31	1	2
3		15	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

est

Given a number field $E \supseteq Q$ of degree $n = [E:Q] < \infty$, there exists $\beta \in E$ such that $E = Q[\beta]$ (Theorem of the Primitive Element: $E \supseteq Q$ is a simple extension). It follows that [Aut $E \mid \leq n$] Why? $1, \beta, \beta^2, \beta, \dots, \beta^n$ are linearly dependent so $q_0 + q_1\beta + q_2\beta^2 + \dots + q_n\beta^n = 0$ for some $a_0, a_1, ..., a_n \in \mathbb{Q}$, not all zero. Actually $a_n \neq 0$, otherwise $1, \beta, \beta^2, ..., \beta^{n-2}$ would generate the extension, a contradiction. After dividing by $a_n \neq 0$ we get $f(x) = q_0 + q_1 x + q_2 x^2 + \cdots + q_m x^m + x^m \in \mathbb{Q}[x]$ as the minimal polynomial of β . Ever \mathbb{C} there exist $\beta_1, \beta_2, \cdots, \beta_m \in \mathbb{C}$ such that f(x) = (x-p,)(x-p) ... (x-p) If $\sigma \in Aut \in Hon \sigma$ must permite the n roots β_1, \dots, β_n (but β_1, \dots, β_n are not necessarily in $E=\mathbb{Q}[\beta]$.) $\mathbb{R}^n + q_{n-1}\beta^{n-1} + \dots + q_1\beta_1 + q_0 = 0$ Think of $f(x) = x^2 - 2$, $\beta = \sqrt[3]{2}$. β + q + + + + + q β + q = 0 => 5 (B + a = B + - + a B + a) = 0 σ(β) + a, σ(β) + ··· + a, σ(β) + a, = 0 ⇒ 5(B) is a root of f(x). If β=β,β,...,β, E and β,,...,β, &E then these exist automorphisms mapping β=β, to any of β,...,βr.
Behind this fact is the explanation coming from the First Isomorphism for Ring Theory: the evaluation map Q[x] -> Q[B] this map is onto, by definition, but not one-to-one. The bornel of this homomorphism is the principal ideal $(f(x)) = \{u(x)f(x) : v(x) \in \mathbb{Q}[x]\}$. So $\mathbb{Q}[x]$ $(f(x)) \cong \mathbb{Q}[\beta] = E$

E (for) QCBIT - QCBIT This gives r isomorphisms E>E (Aut(E)) = r & \{1,2,0,n\}
where r is bour many of the roots of f(x) lie in E= \P[\beta]. When r=n (all roots of f(x) lie in E) then the extension E ? Q is a Galois extension and we have a one-to-one correspondence between subfields of E and subgroups of G= Aut E.

Wait: What if f(x) has repeated roots? Is it possible for an irreducible polynomial f(x) to have A field F is separable if every irreducible poly fix) $\in F[x]$ has only simple roots (no multiple two in any extension. Proof Let $f(x) \in Q[x]$ be irreducible of degree $n \ge 2$. If f(x) has a repeated root $a \in C$ then $f(x) = (x-\alpha)^2 g(x) , \quad g(x) \in \mathbb{C}[x] \text{ of degree} \geq n-2. \quad \text{Then } f'(x) = 2(x-\alpha) g(x) + (x-\alpha)^2 g'(x)$ $= (x-\alpha) \left(2g(x) + (x-\alpha)g'(x)\right). \quad \text{So } \alpha \text{ is a root of } gcd\left(f(x), f'(x)\right) = r(x) f(x) + s(x) f'(x) \quad \text{for some } r(x), s(x) \in \mathbb{Q}[x]$ $= (x-\alpha) \left(2g(x) + (x-\alpha)g'(x)\right). \quad \text{So } \alpha \text{ is a root of } gcd\left(f(x), f'(x)\right) = r(x) f(x) + s(x) f'(x) \quad \text{for some } r(x), s(x) \in \mathbb{Q}[x]$ $= (x-\alpha) \left(2g(x) + (x-\alpha)g'(x)\right). \quad \text{So } \alpha \text{ is a root of } gcd\left(f(x), f'(x)\right) = r(x) f(x) + s(x) f'(x) \quad \text{for } f(x) = r(x) f'(x) + s(x) f$

But in the same way we can evaluate at any of the B. ..., for $\in E$ to get $Q[x] \simeq Q[x]$ (fix) (15:50)

Eq. (at
$$\xi$$
 be a principle seventh root of unity in ξ . The seventh roots of unity in ξ are ξ . If ξ is ξ is a root of $\chi^{\frac{1}{2}} = (x-1)(x-\xi)(x-\xi)(x-\xi)(x-\xi)(x-\xi)(x-\xi)$.

The field ξ is a root of $\chi^{\frac{1}{2}} = (x-1)(x-\xi)(x-\xi)(x-\xi)(x-\xi)(x-\xi)(x-\xi)$.

The field ξ is a root of $\chi^{\frac{1}{2}} = (x-1)(x-\xi)(x-\xi)(x-\xi)(x-\xi)(x-\xi)(x-\xi)$.

The field ξ is a root of $\chi^{\frac{1}{2}} = (x-1)(x-\xi)(x-\xi)(x-\xi)(x-\xi)(x-\xi)$.

The field ξ is a root of $\chi^{\frac{1}{2}} = (x-1)(x-\xi)(x-\xi)(x-\xi)(x-\xi)(x-\xi)$.

If ξ is a root of $\chi^{\frac{1}{2}} = \xi$ is an extraction of ξ degree ξ is a root of $\chi^{\frac{1}{2}} = \xi$.

All roots of $\chi^{\frac{1}{2}} = \xi$ and what are the subfields of ξ is ξ .

If ξ is a defined by ξ is a root of ξ in ξ is ξ in ξ in