Fields

Book

Fields

Let *F* be a set containing distinct elements called 0 and 1 (thus $0 \neq 1$). Suppose addition, subtraction, multiplication and division are defined for all elements of *F* (except division by 0 is not defined). Thus a + b, a - b, ab, $\frac{a}{d} \in F$ whenever $a, b, d \in F$ and $d \neq 0$. Define -a = 0 - a.

If the following properties are satisfied by *all* elements $a, b, c, d \in F$ with $d \neq 0$, then F is a field.

a + b = b + a	a + (b + c) = (a + b) + c	ab = ba
a + 0 = a	a(bc) = (ab)c	1a = a
a + (-a) = 0	a(h+c) = ah + ac	$\frac{a}{d}d = a$
a + (-b) = a - b	a(b+c) = ab+ac	a

$Q^{2\times 2} = \{2\times 2 \text{ maturizes over } Q\} = \{[a, b]: a, b, c, d \in Q\}$ is not a field.
$0 = \begin{bmatrix} 0 & 0 \end{bmatrix}, 1 = \begin{bmatrix} 0 & 1 \end{bmatrix}$ identify
A = A + O = A, A = A = A = A = A = A = A = A = A = A
[00] has no inverse. A[00] = I has no solution for A.
Moreorer, AB = BA in general.
Q ^{2x2} is a (non-commutative) ring with identity.
It has a subring $D = S[od] : a, d \in QS$ is a commutative subring with identity.
But D 13 not a field since it has non-invortige economis.
D'hat terre duvisers: [00][01] - 100]. A field can were note the contracts
(ff a is a zero allowor then $ca = c$ where $ca = c = c$, $contraction)cd = c = c$
For a commitative ring R with identify 0.7 = I = I
being able to divide is stronger than having no zero divisors but not a field
Aa example of a commutative riag with numery
(arrision suis a guiere) is a
$E_a F = S[a_b]: a_b \in \mathbb{R}^2 \subset \mathbb{Q}^{2\times 2}$ is a subring toutening $I = loid.$
$\frac{1}{2} \left[a \right] + \left[b \right] = \left[a \right] \left[a \right] = \left[a \right] \left[a \right] \left[a \right] \left[a \right] = \left[a \right] = \left[a \right] \left[$
It is a I to a I at a to the form
Why is the commetative may commetative in the soon of \$1 \$2
$\begin{vmatrix} a \\ b \end{vmatrix} = a \bot + b \rbrace$ where $\bot = \lfloor o \rfloor \rfloor$, $\Im = \lfloor 2 \rangle \circ \rbrack$ $\land = (a \bot a)$
in Quez (Fis a 2-dimensional subspace of Que, a 4-dimensional vector space).

$(aI+bS)(cI+dS) = acI + (ad+bc)S + bdS^{2} = (cI+dS)(aI+bS)$ = (ac+ 2bd)I + (ad+bc)S	$S^{2} = \begin{pmatrix} 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 & 0 \end{bmatrix} = 2\mathbf{I}$	•
Compare: $K = \mathbb{Q}[\overline{12}] = \{a+b\overline{12} : a,b\in\mathbb{Q}\}$ is a field. $(a+b\overline{12}) + (c+d\overline{12}) = (a+c) + (b+d)\overline{12}$ $(a+b\overline{12})(c+d\overline{12}) = ac + (ad+bc)\overline{12} + 2bd = (ac+2bd) + (ad+bc)\overline{12}$ $Note: F \cong K$ (they are isomorphic) An explicit isomorphism $\phi: K \rightarrow F$ is given by $\phi(a+b\overline{12}) = [\overline{2}ba]$ $\phi(x+q) = \phi(x) + \phi(q)$ $\phi(xy) = \phi(x) \phi(q)$	2]= al+6S	
Similarly $\left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a \\ b \in \mathbb{R} \right\} \subset \mathbb{R}^{2^{KL}}$ is a subring isomorphism $\mathbb{C} \longrightarrow \left\{ \begin{bmatrix} a & b \\ -\gamma & \beta \end{bmatrix} : a \\ b \in \mathbb{R} \right\}$ is $a + b \\ i = 1$	luc to \mathbb{C} . $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ $(a_1 b \in \mathbb{R})$.	•
		•

$Q[JZ] = \{a+bJZ : ab \in Q\}$	• •
$k = 5 + 3\sqrt{2}, \beta = 7 - \sqrt{2}$	• •
	• •
$N_{\rm r} \Lambda = -2 + 4 \overline{2}$	
$a = \frac{1}{2} + $	• •
$\alpha_{\beta} = (5+312)(1-12) = 35-512+412-6 = 21+102$	• •
$\frac{1}{10} = \frac{5+312}{10} = \frac{5+312}{10} = \frac{1}{2+15} = \frac{35+512+2112+10}{47} = \frac{1}{47} = \frac{1}{47} + \frac{26}{47}\sqrt{2}$	
$k = \frac{1}{1-45}$ $1-45$ $1-65$ 10	• •
Nton notively = xe	
$\begin{bmatrix} 5 & 3 \end{bmatrix} \begin{bmatrix} 7 & 1 \end{bmatrix} = 1 \begin{bmatrix} 4^{1} & 26 \end{bmatrix}$	
in matrix representation: [6 5] 17 2 7] 17 52 41]	• •
$\beta \beta \beta $	• •
γ····································	
Similar: $Q[3\overline{2}] = Q[\theta]$, $\theta = 3\overline{2}$.	• •
Saila. also 3 is not a field not even a ring since it's not closed under	_
12+60 apre 43 3 f. Cl 3-2 multiplication.	• •
$Q[\Phi] = \{a + bB + cB^{-}: a \mid b, c \in Q\}$ is a mere. $O = c$	• •
$\varphi = 2\varphi$	
$K = 2 + 2\sigma$ $H = c\sigma$	
$a = 7 = 0$ $a = -2 + 40$ $a^{6} = -4$	• •
$\beta = 7 - \theta \qquad \qquad$	
$\beta = 7 - \theta \qquad \alpha - \beta = -2 + 4\theta \qquad \theta^{6} = 4 \alpha \beta = (5+3\theta)(7-\theta) = 35 - 5\theta + 2(\theta - 3\theta^{2}) = 35 + 16\theta - 3\theta^{2}$	• •

$\frac{\alpha}{\alpha} =$	5+30 = R+	$\overline{\theta}\theta + \overline{\zeta}\theta^2 =$	$\frac{25(}{341} + \frac{182}{341}\theta + \frac{26}{341}\theta$	2 = + (251 + 182) + 26	θ^2 = ξ^2
9	t-0 t	Timel coefficient	на н		0-2 =
Ø = 342		$a, b, c \in \mathbb{R}$	θ	is a root of x-	$2 = (\pi - \theta)(\pi^2 + \theta x + \theta^2)$
	5+3Đ =	$(a+b\theta+c\theta^2)(7-b)$			
· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	7a + (7b-a)8 + = (7a-2c) + (7b-	$(7c-b)\theta^{2}-2c$ $a)\theta + (7c-b)\theta^{2}$	· · · · · · · · · · ·	QEE PER
tope	fully 7a - -a + 76 -b+	2c = 5 $= 3$ $7c = 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 0 & 49 & -2 & 26 \\ -1 & 7 & 0 & 3 \\ 0 & -1 & 7 & 0 \end{bmatrix} $	$\begin{bmatrix} 1 & -7 & 0 & & -3 \\ 0 & 47 & -2 & 26 \\ 0 & 1 & -7 & 0 \end{bmatrix}$
· · · · · · ·	ZG 44 7 26	341	1 -7 0 -3 0 1 -7 0 0 49 -2 26	$ \begin{bmatrix} 1 & 0 & -49 \\ 0 & 1 & -7 \\ 0 & 0 & 341 \end{bmatrix} \begin{bmatrix} 26 \\ 26 \end{bmatrix} $	$\begin{bmatrix} 1 & 0 & -49 \\ 0 & 1 & 0 & -7 \\ 0 & 0 & 1 & 0 & -7 \\ 0 & 0 & 0 & 1 & \frac{26}{341} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
	18 2 44 18 1274	1023	0 1 0 26		· · · · · · · · · · · · · · · · · · ·
- 3	$+ 29.\frac{26}{341}$				· · · · · · · · · · · · · · ·
—	-3+ 1274		Chade: 1/(251+	$(82\theta + 26\theta^2)(7-\theta)$	$= \frac{1}{341} \left(1757 + 1023\theta + 0\theta^{2} - 52 \right)$
· · · · · · · ·	- 1023 + 1274	251			$= \frac{1}{341} \left((705 + 1023 \theta) \right)$
	341	341	Q[f] is a extension of	cubic field 2 R : H is a	= 5 + 30
			3- dimension	nal vector space ove	be Q, with besis s, v, v.

Alternatively use 3x3 matrices to represent elements of Q[0].
Take $T = \begin{bmatrix} 0 & 2 \\ 1 & 2 \end{bmatrix} + poresent \theta$. $T^2 = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = 22$
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 & 24 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 & 24 \\ 0 \end{bmatrix}$
$E = \left\{ aI + b \right\} + cI^{-1} = \left\{ a, b, c \in W \right\}^{-1} = \left\{ le \ b \ a \right\}^{-1} $
ing with identity
Q[0] & E via the isomorphism a field. Is having too devisors
ψ ,
$a+bg+cg^{2} \rightarrow aI+bT+cT$
(OFF) or letween Q and Q[0] ?
Are those any fields between Q and Ulves,
Are there any fields between R and C!
Are there any fields between R and C! Suppose RCFCC is a tower of fields (Fis a subfield of C and R is a Suppose RCFCC is a tower of fields, I have a subfield of C and R is a
Are there any fields between R and C? Suppose R C F C I is a tower of fields (F is a subfield of C and R is a subfield of F). C is a tower of fields (F is a subfield of C and R is a subfield of F). C is a tower of fields (F is a subfield of C and R is a subfield of F).
Are there any fields between R and C? Suppose $R \subseteq F \subseteq C$ is a tower of fields (F is a subfield of C and R is a Subfield of F). $\subseteq vs \subseteq C$ 'C' always means strict containment in subfield of F). $\subseteq vs \subseteq Vs $
Are there any fields between R and C? Suppose $R \subseteq F \subseteq C$ is a tower of fields (F is a subfield of C and R is a Subfield of F). $\subseteq vs \subseteq C$ 'C' always means strict containment in subfield of F). $\subseteq vs \subseteq C$ 'C' always means strict containment in Since $F \supset R$, there exists $v \in F$, $v \notin R$. Then $\alpha, 1$ are linearly independent over R ,
Are there any fields between R and C? Suppose $R \subseteq F \subseteq C$ is a tower of fields (F is a subfield of C and R is a Subfield of F). $\subseteq VS \subseteq C$ 'C' always means strict containment in subfield of F). $\subseteq VS \subseteq C$ 'C' always means strict containment in Since $F \supset R$, there exists $x \in F$, $x \notin R$, then $\alpha, 1$ are linearly independent over R , i.e. $\alpha \neq \alpha, 1$ for any $\alpha \in R$, there C is 2-dimensional over R with basis 1, i
Are there any fields between R and C? Suppose $R \subseteq F \subseteq C$ is a tower of fields (F is a subfield of C and R is a Subfield of F). $\subseteq VS \subseteq C$ 'C' always means strict containment in subfield of F). $\subseteq VS \subseteq C$ 'C' always means strict containment in Since $F \supseteq R$, there exists $x \in F$, $x \notin R$. Then $x, 1$ are linearly independent over R, i.e. $a \neq a.1$ for any $a \in IR$, therever C is 2-dimensional over R with basis 1, i i.e. $a \neq a.1$ for any $a \in IR$, there exists $K \in F$ and K is a constant of K . (aver, complex number is uniquely expressible as $Z = a.1 + b.i$ with $a, b \in R$). So $1, R$ is a
Are there any fields between R and C! Suppose R C F C T is a tower of fields (F is a subfield of C and R is a Subfield of F). Subfield of F). Since F D R, there exists x E F, x & R. Then x, 1 are linearly independent over R, i.e. x ≠ a.1 for any ac R. However C is 2-dimensional over R with basis 1, i (every complex number is, uniquely expressible as Z = a.1+b.i with a, b ∈ R). So 1, x is a basis for F. So F= C.
Are there any fields between R and C! Suppose $R \subseteq F \subseteq C$ is a tower of fields (F is a subfield of C and R is a subfield of F). $\subseteq vs \subseteq c$ 'C' always means strict containment in subfield of F). $\subseteq vs \subseteq c$ 'C' always means strict containment in subfield of F). $\subseteq vs \subseteq c$ 'C' always means strict containment in Since $F \supseteq R$, there exists $x \in F$, $x \notin R$. Then $x, 1$ are linearly independent over R, i.e. $x \neq a.1$ for any $a \in R$. However C is 2-dimensional over R with basis 1, i (every complex number is uniquely expressible as $z = a.1 + b.i$ with $a, b \in R$). So $1, a$ is a hast's for F. So $F = C$.
Are there any fields between R and C' Suppose R E F C C is a tower of fields (F is a subfield of C and R is a Subfield of F). E & C 'C' always means strict containment in subfield of F). E & C 'C' always means strict containment in flis course. Since F D R, there exists & E F, & & R, Then & I are linearly independent over R, i.e. & # a.1 for any ac R. However C is 2-dimensional over R with basis 1, i i.e. & # a.1 for any ac R. However C is 2-dimensional over R with basis 1, i (every complex number is uniquely expressible as $Z = a.1 + b.i$ with $a, b \in R$). So 1, a is a hasis for F. So F= C.
Are there any fields between R and C' Suppose R E F C C is a tower of fields (F is a subfield of C and R is a subfield of F). E vs C 'C' always means strict containment in flis course. Since F D R, there exists we F, ** R. Then *, 1 are linearly independent over R, ie. ** * (every complex number is uniquely expressible as Z= a.1+b.i with a,b e R). So 1.* is a hasis for F. So F= C.
Are there any fields between R and C! Suppose R C F C C is a tower of fields (F is a subfield of C and R is a Subfield of F): C x C 'C' always means strict containment in subfield of F): S x C 'C' always means strict containment in flis control. Since F D R, there exists x e F, x & R, then x, 1 are linearly independent over R, i.e. x ≠ a.1 for any a R. However C is 2-dimensional over R with basis 1, i (every complex number is uniquely expressible as z= a.1+b.i with a, b ∈ R). So 1, x is a hasis for F. So F= C.
Are there any fields between R and C' Suppose R C F C T is a tower of fields (F is a subfield of C and R is a Subfield of F). C V C 'C' always means strict containment in subfield of F). C V C 'C' always means strict containment in this course. Since F D R, there exists we F, N & R. Then a, 1 are linearly independent over R, ie. a ≠ a.1 for any ac R. However C is 2-dimensional over R with basis 1, i (every complex number is numigrally expressible as Z= a.1+b.i with a, b & R). So 1, x is a hasis for F. So F= C.

to these any field extension CCF with F 2-dimensional over C ?
No, but there do exist fields FDC which are infilite dimensional extensions.
Consider the ring C[x] = Epolynomicals in x with complex coefficients }
$= \begin{cases} q_{+} + q_{x} + q_{x}^{2} + \cdots + q_{n} x^{n} : q \in \mathbb{C}, n \ge 0 \end{cases}$
This is a ring but not quite a field eg.
$5 + 7x + 3x^2$
$3 - (4+i)x + 43x^2 \notin C[x]$
C(x) = field of fractions of C[x] = field of notional functions in x with complex coefficients
Just like constructing Q from Z.
Another example of this We'll construct a compably infinite subfield of the containing T.
Another example of this We'll construct a compably infinite subtided of the containing T. This contains the subring OST = Sa + aT + 2T ² + + 4T ^T : N>0, 9, COZ
Another example of this: We'll construct a courtably infinite subfield of the containing π . This contains the subring $Q[\pi] = [a_0 + a_1\pi + a_2\pi^2 + + a_n\pi^n : n \ge 0, a_i \in O_i^2$ $\pi \in O[\pi]$ has no (multiplicative) inverse in $Q[\pi]$ since if
Another example of this: We'll construct a courtably infinite subfield of the containing \mathfrak{m} . This contains the subring $\mathbb{Q}[\mathfrak{m}] = \{a_0 + q_1 \mathfrak{m} + q_2 \mathfrak{m}^2 + \dots + q_n \mathfrak{m}^n : n \ge 0, q \in \mathbb{Q}\}$ $\mathfrak{m} \in \mathbb{Q}[\mathfrak{m}]$ has no (multiplicative) inverse in $\mathbb{Q}[\mathfrak{m}]$ since if $1 = \mathfrak{m} (q_0 + q \mathfrak{m} + q_2 \mathfrak{m}^2 + \dots + q_n \mathfrak{m}^n) q \in \mathbb{Q}, n \ge 0$, $\mathfrak{m} \in \mathbb{Q}[\mathfrak{m}]$ has no (multiplicative) inverse in $\mathbb{Q}[\mathfrak{m}]$ since if $1 = \mathfrak{m} (q_0 + q \mathfrak{m} + q_2 \mathfrak{m}^2 + \dots + q_n \mathfrak{m}^n) q \in \mathbb{Q}, n \ge 0$, $\mathfrak{m} \in \mathbb{Q}[\mathfrak{m}]$ has no (multiplicative) inverse in $\mathbb{Q}[\mathfrak{m}]$ since if
Another example of this: We'll construct a courtably infinite subfield of the containing \mathfrak{m} . This contains the subring $\mathbb{Q}[\mathfrak{m}] = [a_0 + a_1 \pi + a_2 \pi^2 + + a_n \pi^n]$: $\mathfrak{n} \ge 0$, $q \ge 0^2$ $\mathfrak{m} \in \mathbb{Q}[\mathfrak{m}]$ has no (multiplicative) inverse in $\mathbb{Q}[\mathfrak{m}]$ since if $1 = \mathfrak{m} (q_0 + q \pi + q_2 \pi^2 + + q_n \pi^n)$ $q \in \mathbb{Q}$, $\mathfrak{n} \ge 0$, a contradiction since π is transcendental. (π would be a not of a nonzero polynomial $q_n \pi^n + a_n \pi^n + a_n \pi^n + a_n \pi^n + q_n \pi^n + $
Another example of this: We'll contruct a courtably infinite subfield of the containing \mathfrak{m} . This contains the subring $\mathbb{Q}[\mathfrak{m}] = [a_0 + q, \mathfrak{m} + q, \mathfrak{m}^2 + + q, \mathfrak{m}^2]$: $\mathfrak{n} \ge 0$, $q \in \mathbb{Q}^2_{\mathbb{Q}}$ $\mathfrak{m} \in \mathbb{Q}[\mathfrak{m}]$ has no (multiplicative) inverse in $\mathbb{Q}[\mathfrak{m}]$ since if $1 = \mathfrak{m} (q_0 + q \mathfrak{m} + q, \mathfrak{m}^2 + + q, \mathfrak{m}^n)$ $q \in \mathbb{Q}$, $\mathfrak{n} \ge 0$, a contradiction since \mathfrak{m} is transcendental. (\mathfrak{m} would be a not of a nonzero polynomial $q_n \mathfrak{m}^{n+1} + q_n \mathfrak{m}^n + q_n \mathfrak{m}$
Another example of this: We'll construct a courtably infinite subfield of the containing the This contains the subring $Q[\pi] = \int a_0 + a_1\pi + a_1\pi^2 + \dots + a_n\pi^n$: $n \ge 0$, $a_i \in O_j^2$ $\pi \in O[\pi]$ has no (multiplicative) inverse in $Q[\pi]$ since if $1 = \pi (q_0 + q\pi + q_2\pi^2 + \dots + q_n\pi^n)$ $a_i \in O_i$ $n \ge 0$. a contradiction since π is transcendental. (π would be a not of a nonzero polynomial $q_n\pi^n + a_n\pi^n + $

Q C R C C countable incontable incontable Q = { a, a, a, a, a, ... 9,+9,7 9,+827 9,+93× ... A = {algebraic mulers} $Q \subset A \subset C$ 93+9,x 9,+9x 4,+9,x ... QCAAR C contable incontable. -3 -2 -1 0 1 2 $Q(\pi)$ is a countedly intiate ving so $Q(\pi)$ is a countably intiate field. Elements of Q(TT) CR look like $\frac{53.8 \pi^{2} - 17\pi + \frac{53}{7}}{42\pi^{2} + 119\pi + \frac{103}{648}}$ $\begin{array}{cccc} & 42\pi^2 + 119\pi + \frac{103}{648} \\ \mbox{Compare: } & \mathbb{Q}(e) \subset \mathbb{R} & another countable subfield of \mathbb{R} \\ \mbox{Actuelly } & \mathbb{Q}(e) \cong \mathbb{Q}(\pi) & An isomergius is f(e) \longmapsto f(\pi) & where f(x) \in \mathbb{Q}(x) \\ \mbox{Actuelly } & \mathbb{Q}(e) \cong \mathbb{Q}(\pi) & An isomergius is f(e) \longmapsto f(x) & (x heing an indeterminate is an calestract symbol generic generic generic. \end{array}$ Q(x) -> Q(r) evaluation doesn't quite work eg. the image of $\frac{x^3+7x^2-3}{x^2-2} \in \mathbb{Q}(x)$ is undefined; for can't evaluate this at $\sqrt{2}$. $Q(\mathbf{x}) \longrightarrow Q(\mathbf{e})$ $Q(x) \longrightarrow Q(Jz)$ But $Q[x] \longrightarrow Q[\pi]$ the evaluation Q[x] -> Q[e] $\pi_{,e,Jz,\cdots} \otimes [x] \longrightarrow \otimes [Jz]$

* Suppose F, K are fields. If $\phi: F \rightarrow K$ is a ring homomorphism then either (i) $\phi(F) = \{0\}$ i.e. $\phi(e) = 0$ for all $e \in F$, or (trivial)Any homomorphism ϕ is one-to-one i.e. $\phi(F) \subseteq K$ is a subfield isomorphic to F. $Q(x) \longrightarrow \mathbb{R}$ is either trivial or it has the form $Q(x) \longrightarrow Q(a)$, $f(x) \longrightarrow f(a)$ is an evaluation at some transcendentel unifier $a \in \mathbb{R}$. We have homomorphisms $\mathbb{Q}[\pi] \longrightarrow \mathbb{C}^{n \times n}$ (n \times n complex metrices) where we evaluate at a metrix $A \in \mathbb{C}^{n \times n}$, i.e. $f(x) \leftrightarrow f(A)$ 47×2+ 18×-14 → 47 A2+ 18A- 41 I (#) In a field F, every ideal is either for An automorphism of e field F is an isomorphism φ: F→F. Eg bijective with (i) Automorphisms of Q[se] ? We want φ: Q[se] → Q[se] bijective with φ(a+b) = φ(a) + φ(b), φ(ab) = φ(a) φ(b). · The identity $\phi(x) = x$ for all $x \in \mathbb{Q}[\sqrt{2}]$ (This is algebraic conjugation, not complex conjugation). · Conjugation \$(a+b)= a-b) for all a, be Q These are the only attomorphisms of Q[vi).

If &: F -> F is any automorphism of a field F then	
$\phi(o) = \phi(o+o) = \phi(o) + \phi(o) \implies \phi(o) = o$	•
$\phi(1) = \phi(1,1) = \phi(1), \phi(1)$ where $\phi(1) \neq 0$ since ϕ is one to one. Multiply and sides	•
by $\phi(i)$ to get $\phi(i) = 1$. If $m, n \in \mathbb{Z}$ with $n \neq 0$,	
$ \phi(x) = \phi(1+i) = \phi(1) + \phi(i) = 1 + (1 = 2) $ $ \phi(n, \frac{m}{2}) = \phi(m) = m $	•
$ \phi(3) = \phi(2+i) = \phi(2) + \phi(i) = 2+i = 3 $ $ \phi(n) \phi(m) = 2 + i = 3 $ $ \phi(n) \phi(m) = 2 + i = 3 $ $ \phi(n) \phi(m) = 2 + i = 3 $:
$S_0 = 3 + (-3) = 0$	
$\varphi(3) + \varphi(-5) - \varphi(0-5)$	•
5^{-2}	•
$\varphi(z) = \varphi(z) = \varphi(z) = z = \varphi(z) = z = z$ for all abe Q	
If $\phi(E) = \sqrt{2}$ then $\phi(a+b/2) = \phi(a) + \phi(a)\phi(b) = a+b(E) = a-b/2$.	•
$If \phi(Jz) = -1z - the \phi(ar trz) = \phi(a) + \phi(b) \phi(rz)$	•
If F is any field then but F = Eall automorphisms of FS is a group under composition.	
Hs identify is I where I: F-> F. I(x) = x for all x f (the identify map).	•
Aut Q = {13 is trivial	•
Aut R = { 1} is trivial but my	
Q[JZ] C R has two automorphisms.	•
Aut Q[52] is a group of order 2.	•
Aut C contains & and T = complex conjugation, T(a+bi) = a-bi prall a, b e R.	
But Aut C is uncontable. C has uncontage many more quint	•
CH . UN CONTRALONC ANTEMPOTIVE ST UN COP 1'E	

The conjugation & E Ant Q[Jz] defined by \$ (2+6) = 2-6) a (2,6 EQ) is badly discontinuous i single graph of ø & is bedly discontinuous. $\iota: Q[\overline{z}] \to Q[\overline{w}_{z}]$ is continuous R(x) = { rational functions of x with real coefficients } is a field. Can we replace "rational functions" with "functions" or "continuous functions" R-> R { functions R -> R } & continuous functions R-> R? are rings with zero divisors so they are not fields. $f_2(x) = \begin{cases} 0 & if \\ 1 & x_{0} \\ x_{0} & if \end{cases}$ $(x) = \begin{cases} x & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$ Commitative rings with identity under pointavise multiplication. Ph=0 x≤o f, f2=0 but f, f2 are vonzero functions.

How do we check that $f(x) \in \mathbb{Q}[x]$ is irreducible (i.e. in $\mathbb{Q}[x]$)? eg. $f(x) = x^4 + x^2 + x + 1$ bd =1 implies b=d=±1. If b=d=1 then If $f(x) = (x^2 + ax + b)(x^2 + cx + d)$ then $f(x) = (x^2 + ax + 1)(x^2 - ax + 1)$ has no x term, a contradiction. degree 2 degree 2 in $\mathbb{Z}[x]$ in $\mathbb{Z}[x]$ $q, b, c, d \in \mathbb{Z}$ If b=d=-1 then $f(x) = (x^2 + ax - i)(x^2 - ax - i)$ has no x term again a contradiction. then al=1 so $a=d=\pm 1$, but f(1)=4 g go ± 1 are not roots f(-1)=2 of f(x). If $f(x) = (x + a)(x^3 + bx^2 + cx + d)$ where $a, b, c, d \in \mathbb{Z}$ So fix) is irreducible in Z[x]; so fix) is irreducible also in Q[x]. Why do we care about automorphisms of fields? Historically the study of fields originated in questions about finding roots of polynomials. The roots of ax^2+bx+c ($a\neq 0$) are $-b\pm Jb^2-1ac$ S: 1 and 10 1 2 20 Similarly the roots of ax³+bx²+cx+d are given explicitly using formulas of a,b,c,d using +, -, x, - and extending gauge roots and use roots. Similarly for plynomials of degree 4. But for degree 75, no such formula exists The reason is found in group theory. Galois theory gives the connection botwen fields and The reason is found in group theory. Galois theory gives the connection botwen fields and The reason is found in group theory. Galois theory gives the connection botwen fields and subset of the roots lie in F = Q(r, ..., r_n) C C. Let G = Aut F. G pormites is found for performance G is a subgroup of S.) order "!

If F is a field then F[a] = ring of all polynomials in a with all	coefficients in F.
= the smallest ring containing F and a F(a) = the field of all rational functions in a	with coefficients in F
You can do all this for more than one element a e.g.	ing a
F[a,, qk] = the ring of all polynomials in a,, qk = the smallest ring containing F and a,	with coefficients in t
= the ring generated by r, a,, of F(a,, a) = the field extension of F generated by a,	, q, together with F.
eg. $Q[VZ] = \{a_0 + a_1VZ + a_2VZ^2 + a_3VZ^2 + \dots + a_3VZ^2 : M \ge 0, q \in Q\} = \{a + b_1Z : q, Q \in Q\}$	L∈ Q}
$ \mathbb{Q}(JZ) = \mathbb{Q}(JZ) = \mathbb{Q}(JZ) = \mathbb{Q}(JZ) = \mathbb{Q}(JZ) + \mathbb{Q}(JZ) = \mathbb{Q}(JZ) + \mathbb{Q}(JZ)$	$\in \mathbb{Q}^{3}$
eq $x = \sqrt{2} + \sqrt{5} \in \mathbb{Q}[\sqrt{2}, \sqrt{5}]$ is a roof of a polynomial $f(x) \in \mathbb{Q}[x]$, in fact In fact $x \notin \mathbb{Q}$ (why?)	$t + (x) + \mathbb{Z}[x]$ = $\sqrt{2} + \sqrt{5}$ Candidate: $x^{-} + 4x^{2} + 9$
f(i) = x ¹ -14x ² +9 is the minimal polynomial of a over Q	= 7+2100 You can check that this 7 = 2500 pby is itted in Q[x]
in the sense that a polynomial $g(x) \in Q[x]$ has a 22 a $x - 17x$ root \mathcal{A} f(x) $g(x)$ is $g(x) = u(x) f(x)$, $u(x) \in Q[x]$.	+77 - 70 (using slops we used on b2+9 = 0 Forday Sept 13).
Proof: If $g(x) = u(x)f(x)$ for some $u(x) \in \mathbb{R}[x]$ then $g(x) = u(x)f(x) = 0$ i.e. $g(x)$ is a poly. with coeffs in \mathbb{R}	If r(x) =0 then take d(x) = gcd (f(x), r(x)) = q(x) f(r) + b(x) r(x) h. Euclid's Algorithm
having a as a root. Conversely, suppose $g(x) \in \mathbb{Q}[x]$ having a as a root. Then $g(x) = q(x)f(x) + r(x)$ with $g(x), r(x) \in \mathbb{Q}[x]$, log $r(x) < 4$.	$d(\omega) = a(\omega) f(\omega) + b(\omega) r(\omega) = 0.$ (a (modistion since f(x) is
Now $g(\alpha) = g(\alpha) - f(\alpha) + r(\alpha) = 0 = 7 r(\alpha) = 0.$	ireducible in Q[x].

If $x \in C$ is algebraic (or is a nost of coefficients in $m_x(x) \in Q[x]$ of smallest degree which is monic i.e. its	(ading coeff. 15 1. mijne
The minimel pog. of $12 + J5$ is $x^4 - Hx^2 + 9 = (x^4 - 14x^2 + 3)$	$(9) - 40 = (x^2 - 7)^2 - 40 = (x^2 - 7 + 2\sqrt{10})(x^2 - 7 - 2\sqrt{10})$
The roots JZ+J5, -JZ-JE, -JZ+J5, JZ-J5	= (x - (-12 + 32))(x - (-12 - 32))(x - (-12 - 32)) = (-12 - 32)
$\sqrt{7} - 2\sqrt{10} = -\sqrt{2} + \sqrt{5}$ Sin Ce $(-\sqrt{2} + \sqrt{5})^2 = 7 - 2\sqrt{10}$ $(\sqrt{2} - \sqrt{5})^2 = 7 - 2\sqrt{10}$ $\sqrt{2} \neq \mathbb{Q}$	= (x+v2-J5) (x-v2+v5) (x-v2-J5) (x+v2+v5) by Euclid's argument
√7+ 210 = √2+J5 siele (J2+J5) ² = 7 + 210 tf √2	= M, m, n e Z in lowest terms is. ged (m, n)=1
(-JZ-J5) = 7+2 JIO then is en	$n^2 = 2n^2$ is even so $m = 2r$, $r \in \mathbb{Z}$, $4r^2 = 2n^3$, $n = 2r^2$ en so a is even, a controdiction.
le Same ±12±15	€ Q, since their squares are 7±2510 € Q. € Q, since their squares are 7±2510 € Q.
$E = \mathbb{Q}[\overline{vz}, \overline{vs}] = \mathbb{Q}[\alpha], \alpha = \sqrt{2} + \sqrt{5}$ in \mathbb{Q}	[x].
$\{a+b(z+c(s+d))\} = \{a+ba+ca^2+da^3 : a, ba+b(z+ca^2+da^3)\}$	o, c, de R §
This equality is explained as follows: E=Q[12,15] = 2 is a 4-dimensional vector space over Q with be	a+bE+cF5+dJT0: a,b,c,de Q3 isis {1,E, F3, T03
$E = Q[\alpha], \alpha^{-}H\alpha^{+}q=0 \qquad \qquad$	$2-9^{2} = 187^{2} - 126$
$a + b\alpha + c\alpha + d\alpha^{3}$: $a,b,c,d \in \mathbb{Q}^{3}$ There is no nonzero (c	$(b,c,d) \in \mathbb{Q}^2$ with $a+be+ca^2+da^2=0$
So 1, a, a, a are linearly in	rependent wer 4.

An important class	ss of examples o	f fields is:	(algebraic) number	fields are	finite-dimensional
$extensions E \ge 0$ Q, Q[1]	ω eq Σ] Q[FF] Q[;;), Q[(FB])	Q[a]=Q[J2,15], x=12+v5	etc.	· · · · · · · · · · · · · ·
Not R, C which 1, √2, 53, 55, 57, 57,	are intimite - dime 173, are linear	ly independent	-rez Q.	· · · · · · · · ·	· · · · · · · · · · · · · ·
	· · · · · · · · · ·				
	· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · ·	
		· · · · · · · · · · ·			
· · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · ·	
	· · · · · · · · · ·				
· · · · · · · · · · · · ·		· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · ·
· · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · ·	