Fields

Book II

Eq. $\alpha = \sqrt{2+\sqrt{2}}$ The minimal poly of α over Q is $f(x) = x^4 - 4x^2 + 2 \in Q(x)$ $x^2 = 2+\sqrt{2}$ (Exercise: $f(x)$ is irreducible in $Q(x)$ so it really is the min	by of a one (2)
The mate of $f(x)$ alp $\theta = \sqrt{2+\sqrt{2}}$	
A A-2 + 9	
$\alpha = -\beta = -\sqrt{2}-\sqrt{2}$	
$f(x) = x^{2} - 4x^{2} + 2 = (x - \alpha)(x + \alpha)(x - \beta)(x + \beta)$	
In this case E= Q[u] = {a+ba + ca ² + da ³ : a,b,c,d ∈ Q} contains all the roots	of ta)
so it is a normal extension of Q . $P = (*) + (*)\alpha + (*)\alpha^2 + (*)\alpha^3 = \alpha^3 - 3\alpha$ $\kappa \beta = \sqrt{2 + \sqrt{2}} \sqrt{2 - \sqrt{2}} = \sqrt{4 - 2} = \sqrt{2} = \alpha^2 - 2$	
$\alpha \beta = \sqrt{2 + \sqrt{2}} \sqrt{2 - \sqrt{2}} = \sqrt{4 - 2} = \sqrt{2} = \alpha - 2$ $\implies R = \alpha^{2} - 2 \leftarrow Q(\alpha) = Q(\alpha)$ $\alpha^{4} - 4\alpha^{2} + 2 = 0$	$\alpha^{4} = 4\kappa^{2} - 2$
	$\alpha^{6} = 4\alpha^{4} - 2\alpha^{2}$
	$=4(4a^{2}-2)-2a^{2}$
Look for an automorphism $\sigma: E \longrightarrow E$ $(E=Q[\alpha])$ satisfying $\sigma(\alpha) = \beta$.	$= Ha^2 - 8$
$\sigma(\beta) = \sigma(\alpha^{2} - 3\alpha) = \sigma(\alpha)^{3} - 3\sigma(\alpha) = \beta^{3} - 3\beta = (\alpha^{3} - 3\alpha)^{3} - 3(\alpha^{3} - 3\alpha) = (\alpha^{3} - 3\alpha)((\alpha^{2} - 3\alpha)^{3} - 3\alpha)((\alpha^{2} - 3\alpha))((\alpha^{2} - 3\alpha)^{3} - 3\alpha)((\alpha^{2} - 3\alpha))((\alpha^{2} - 3\alpha))(($	
$= (a^{3} - 3a)(a^{4} - 6a^{4} + 9a^{2} - 3) = (a^{3} - 3a)(14a^{2} - 8a - 6(1a^{2} - 2) + 9a^{2} - 3) = (a^{3} - 3a)(-a^{3} + 1) = a(a^{2} - 3a)(-a^{3} - 3a)(-$	$(-d^2+1)$
$= d(-d^{4}+4d^{2}-3) = d(-(4d^{2}-2)+4d^{2}-3) = -d$	select a state of the
$\delta_{2} \propto \beta_{2} \alpha^{2} 3 \alpha \qquad \gamma - \alpha \qquad \gamma - \beta \qquad \gamma - \alpha \qquad \gamma - \beta \qquad \gamma - \beta \qquad \gamma - \beta \qquad \gamma = \alpha \qquad \gamma - \beta \qquad \gamma = \beta \qquad \gamma $	$o(a) = \beta$ $o(\beta) / t(-\alpha) = -t(\alpha) = -\beta$
Aut $E = \langle \sigma \rangle$ of order 4 ; cyclic. $G = Aut E = \langle \sigma \rangle = \{1, \sigma, \sigma, \sigma\} = B(-1)$	
Q[x] = - a contespondence 7 2/ contespondence 7 2/	β $(\beta) = -\alpha$
$0[E] \qquad \qquad$	$2 - \sigma(-\beta) = \sigma(\beta) = \sigma(\beta) = \sigma(\beta)$
$\begin{aligned} & \overleftarrow{f} : & \overleftarrow{f} = \sqrt{3} & \overleftarrow{f} = -\sqrt{3} & \overleftarrow{f} = -\sqrt{3} & \overleftarrow{f} = \sqrt{3} &$	$=\beta^2 - 2 = -\sqrt{2}$
an an an an an an an an <mark>Q</mark> han a ∠an an a	

5	quadrotic exter cabic quartic quictic	I the transitivity of a IF [F:Q] = 1 the IF [E:F] = More generally Then the only	(ie. F is an intermediate field) then legrees tells us [E: Q] = [E: F][F: Q] 3 or 1 × 3 on §13 is a basis for Forler Q so F = §al : a < Q3 1 then (similarly) E=F. F E2F is an extension of prime degree p= [E: F] intermediate extensions are E and F.
What are the aut	anorphisms of E:	Q/27 ~= 35? If	$\phi \in Aut \in Hen \phi(\alpha^3) = \phi(\alpha^3) = \phi(2) = 2$
	• • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
• • • • • • • •		· · · · · · · · · · · · · ·	
	· · · · · · · · · · · ·		

In C, every poly. $f(x) \in \mathbb{C}[x]$ of degree n factors as $f(x) = a(x-r_1)(x-r_2)\cdots(x-r_n)$ $(a, f_1, f_2, \cdots, f_n \in \mathbb{C})$ where $\xi = e^{2\pi i/n}$ eg $x^{n}-1 = (x-1)(x-\xi)(x-\xi^{2})(x-\xi^{3})\cdots(x-\xi^{n-1})$ de Moivre's formula: $e^{i\theta} = \cos\theta + i\sin\theta$ $\int \int Complex numbers C = \{a+bi: a, b\in R\}, i= Ji$ Every ZEC has unique exposentation as Z= a+bi (a, ber) in rectangelor coordinates $z = a + bi = re^{i\theta}$ a = Rez = Ral part of Z b = Im z = imaginary part of Z. r= |2| = Ja2+62 The roots of x^n-1 are the nth roots of unity: 1, ξ , ξ^2 , ξ^{n-1} forming the vertices of a regular n-gon inscribed in the unit circle |z| = 1. Eq. n= 4 The bourth roots of unity are ±1, ±i the bourth roots of unity are ±1, ±i 1, e¹=i, e²=i, -i Euler's Formula eⁱ=-i e²=-i 5= e#i Eq. n=3: The three cube roots of unity in C are 1, w, w² where $\omega = e^{\frac{2\pi i}{1}} = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2}$ Jen-1 $\chi^{2}-1 = (\chi-1)(\chi^{2}+\chi+1) = (\chi-1)(\chi-\omega)(\chi-\omega^{2})$ $\omega = \frac{-1\pm 43}{2}$ $w = \overline{w}$

follow links on course website instructional videos -> com Eq. consider $f(x) = \frac{1}{x^2 - 6x + 25}$ This function has poles at x= 3±4i € C with $|3\pm 4i|=5$ By the Binomial Theorem (1+1) (Binomial Thesen) to evaluate powers (x+ iy) 5 Much faster $|1+i| = \sqrt{1^2 + 1^2} = \sqrt{2}$ $(1+i)^{"} = (\sqrt{2}e^{\frac{1}{4}})^{"}$ 2 3212 nthe roots of Z

Cube roots of mity	$in \mathbb{C}$: $1, \omega, \omega^2 = \overline{\omega}$			•
w	$\omega = e^{2\pi i \frac{1}{3}} = \frac{-1+\sqrt{3}}{2} = \frac{-1}{2} + \frac{\sqrt{3}}{2}$		Q & Galois 2	
91	$\omega^2 + \omega + i = 0$		G = Aut Q[w] = <t> = {1,</t>	τÌ
$\bar{\omega} = \omega^2 T$	ω is a root of $x^{-1} = (x-1)$	$(x^{2} + \pi + 1) = (\pi - 1)(\pi - \omega)(\pi - \omega^{2})$	where $T(E) = E$	(**)
Now let $\alpha = 3\sqrt{2}$, F	F = Q[x]	$\tau(\omega) = \omega^2$		•
$F=Q(\alpha)= \{a+1\}$	over Q is $x^3-z \in Q[x]$ by $z^3 : a, b, c \in Q^3$. Aut			
· · 3 · · · · · · · ·		$\sim 1 \times 12 = 2$		
Scale by facto	r of α	The other roots of	3-2 are not in F= (R(K) ie. Q is not normal.	•
a a a a a Tara a a	$(x_2)(x-a_3)$ where $\alpha_1 = \alpha_1$	$\alpha_1 = \alpha_{47} \alpha_2 = \alpha_{45}$		•
a da 🔪 e de la caractería de la c		$x^{2} = (x - \alpha_{1})(x - \alpha_{2})(x - \alpha_{2})($	$-a_2)(\chi - \alpha_3)$	•
	$a^{2} = 2$ $(\alpha w)^{2} = \alpha w^{2} = 2 \cdot 1 = 2$	basis (x - a) (x) $basis (x - a) (x)$ $so [E: f] = 2$ $(x - a) (x)$ $basis (x, a)$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	$(\alpha W) = \alpha W - 2 \cdot (= 2)$			
0 d=	$(\alpha \omega^2)^3 = \alpha^3 \omega^6 = 2 \cdot 1 = 2$	R[a1, 42, 93] R[u]	$E: Q] = 2.3=6$ $W = \frac{1}{2} 2^{\frac{1}{2}} 2^{\frac{1}{2}} \omega$	•
	There are 21 . (mer that	Q[u,w]		•
qw2	There are 3!= 6 permiter	ingation In Sz	$= \langle \sigma, \tau \rangle$, $\sigma = (123)$, $\tau = (23)$.	•
= ~3			$\frac{\langle z \rangle}{\langle z \rangle} = \frac{\alpha_3}{\alpha_2} = \frac{\alpha_1 \omega^2}{\alpha_2} = \omega$	
	≪s ≪3 ∞ ³	$\sigma(\frac{\partial \omega}{\partial x})$	V() 05 060	•
	≪ ແມ ແ ເມ ເມ ພ ²	$\tau(\omega) = \tau\left(\frac{\omega_2}{\omega_1}\right) = \frac{\omega_2}{\omega_1}$	$=\frac{\alpha\omega^2}{\omega}=\omega^2=\overline{\omega}$	•
	ω ω ω ω ω ω ω		la s ^a n ann an a	

$E = Q[\alpha_1, \alpha_2, \alpha_3] = Q[\alpha_1, \omega_2]$ $2 \qquad 2 \qquad$	Hasse diagram of substitutes of E	liagram of subgroups	G: S3= (5, C)	
$\frac{2}{2} \frac{2}{2} \frac{2}$	Galois correspon	fG= Kt E	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Vores Double times indice normality. Using right-to-left composition
A subgroup $H \leq G$ is normal all $g \in G$. Eq. in $G = S_3$, $H = \langle \sigma \rangle = \langle (1)$ $g = (12)H = (12)\xi(1) = \langle (123), (123), (123), (123), (123)$	23)) is normal.	· · · · · · · · · ·		$\mathcal{T} = (132)(23) = (13)$ $\mathcal{T} = (123)(23) = (12)$ $\mathcal{T} = (23)$ (12)(123) = (1)(23)
eg. $(12)H = (12)\xi(), (123), f$ $H(12) = \xi(), (123), (132)\xi(12)$ 4τ is a subgroup of 6 which $(13)\langle \tau \rangle = (13)\xi(), (23)\xi =$	$h = \{(12), (13), (23)\}$??	$\chi^{3}-2 =$	$\frac{\text{(12)(123)}^{2}}{(12)} = (12)^{2}$ $= (12)^{2}$ $= (12)^{2} (12)^{2} = (12)^{2} (12)^{2}$ $= (12)^{2} (12)^{2} = (12)^{2} (12)^{2} (12)^{2}$ $= (12)^{2} (12)^{2$
$\langle t \rangle (13) = \{(), (23)\} (13) =$ The extension $Q[\alpha] > 0$ of	{(13), (123)} degree [Q[v]: (2]=3 is not no of a over Q	vud	
	since the min. poly with O[K) three roots	ortaming of x-2.	ney one or int	

In $E = \Omega[k_1, \omega]$ the splitting field of $\gamma^2 - 2 = (x - \pi)(x - \kappa\omega)(x - \kappa\omega^2)$, can we find a single element $\beta \in E$ generating E i.e. $E = \Omega[\beta] = \beta Q + q_1\beta + q_2\beta^2 + \cdots + q_5\beta^5$: $q_0, q_1, \ldots, q_5 \in \mathbb{Q}$? Such an element β must be in E but not in $\Omega[\omega] \cup \Omega[\omega] \cup \Omega[\omega\omega] \cup \Omega[\omega\omega^2]$.
Such an element & must be in E but not in Qlw1 U Qlw1 U Qlow] U Qlow?]
In a 6-dimensional vector space, we must sind a vector not contained in this matter of tour proportional of dimension 2333 respectively.
In R° can R° be a min of finitely many proper subspaces? No because each proper subspace of R° loss only dimension = 2 so it covers a clice of the unit bell of volume O. A finite union of proper subspaces covers zero volume of the mit bell; it can rever cover the total volume \$ IT of
In Q ³ , i.e. points of R ³ with rational coordinates, can Q ² = U, U U2 U U2U. U U1 with U1 ≤ Q ² popor
Sabspaces? The volume of Q (as a subset of W) is constably infinite. Q ³ = E V1, V2, V3, V4, } is constably infinite. Let E>0. We will show theat the volume of Q ³ is at most E. Let E>0. We will show theat the volume of Q ³ is at most E. Take a ball B. of radius smell enough centered at V. such that its volume is less than $\frac{2}{2}$. (i=1,2,3,9.) Take a ball B. of radius smell enough centered at V.
$\bigcup_{i=1}^{N} B_{i} \text{ has volume} < \frac{\varepsilon}{2} + \frac{\varepsilon}{4} + \frac{\varepsilon}{8} + \frac{\varepsilon}{16} + \dots = \varepsilon \text{ Now } Q \subset \bigcup_{i=1}^{N} B_{i} \text{ , so } \operatorname{Vol}(Q) < \varepsilon \text{ . } O$
Try another approach. Suppose $Q^3 = U_1 \vee U_2 \vee \cdots \vee U_k$, $U_i \leq Q^3$ proper subspaces, so dim $U_i \in [9, 1, 2]$. Take a line $L \subset Q^3$ not through the origin. Then l is contained in at most one of the subspaces U_i . With careful choice we may assume l is not contained in any U_i . (Not hard.) Each U_i intersects l in at most one point. This is a contradiction.
al most one point into the second s

Galois theory handout : ignore "separable" for nour
Example of an extension EDQ of degree 3 with 6= Aut E of order 3?
$f(x) = \pi^3 + x^2 - 2x - 1 \in \mathbb{Q}[x] is irreducible$
$f(x) = (x - \alpha)(x - \beta)(x - \gamma)$ where $\alpha^3 + \alpha^2 - 2\alpha - 1 = 0$
$u^{3} = 1 + 2u - u^{2}$ $u^{4} = u + 2u^{2} - u^{3} = d + 2u^{2} - (1 + 2u - u^{2}) = -1 - u + 3u^{2}$
$\alpha^{2} = \alpha + 2\alpha - \alpha^{2} = 0.224 \text{has exactly}$ $\alpha^{2} = 3 + 5\alpha - 4\alpha^{2} \qquad \text{has exactly}$
$\alpha = -4 - 5\alpha + 9\alpha$ 3 au mustries
Check that it is also a root of fix):
(hede that $\alpha = 2$ is also a root of $\tau(x)$) $f(\alpha^2 = 2) = (\alpha^2 = 2) + (\alpha^2 = 2) - 2(\alpha^2 = 2) - 1 = 0 \text{after collecting terms, so } \alpha^2 = 2 \in \{x, \beta, \gamma\}$ $f(\alpha^2 = 2) + (\alpha^2 = 2) - 2(\alpha^2 = 2) - 1 = 0 \text{after collecting terms, so } \alpha^2 = 2 \in \{x, \beta, \gamma\}$
(an $k-2=\alpha$ No. If $k = 13$ is interest by Euclid's Algorithm ged ($f(x), g(x)$) = $r(x)f(x) + s(x)g(x)$ by Euclid's Algorithm which is a factor of $f(x)$ of degree less them 3, a contradiction. WLOG $\beta = \alpha^2 - 2$. Now $\beta^2 - 2$ is also a root of $f(x)$ by the same reasoning, so $\beta^2 - 2 \in \{\alpha, \beta, 1\}$. As $\ln C = \alpha^2 - 2 \neq \beta$ of $\alpha^2 - 2 = \alpha$ then $(\sqrt{\alpha} - 2)^2 - 2 = \alpha = \alpha^2 - 4\alpha^2 + 4 - 2 = \alpha$
which is a factor of fix) of degree less than 3, a continue possening so B-2 E Eq. B. 13
WLOG B= x=2. Now B=2 is also a root of t(x) by fue sume
the detaile, p-c+p. I p-c-4 non (c-) - 4 2
hut $g = \frac{1}{x^2 + x^2 - 2x - 1}, \frac{1}{x^2 - 4x^2 - x + 2} = 1$, contradiction So $g^2 = 2 = 7$. Now $g^2 = \alpha$. Indeed $1 - 2q - q^2 = 0$
$C = 2^2 = \gamma$ Now $\gamma^2 = \alpha$. Indeed. $1 - 2\gamma - \alpha^2 = 0$
the map $A = 0$ is a + bat + ca ² : a, b, c $\in \mathbb{Q}$ of legree $[E: \mathbb{Q}] = 3$ (a cubic extension)
The map $X \mapsto X^{-2}$ gives a cyclic prime $[E:Q] = 3$ (a coloic extension) The field $E = Q[X] = \{a + bx + ca^2 : a,b,c \in Q\}$ of legree $[E:Q] = 3$ (a coloic extension) has automorphism group $G = Aut E = \langle \sigma \rangle = \{\iota, \sigma, \sigma^2\}$, cyclic of order 3.

	1	E = Q	[4]	· · ·	y G	= <0>		•		Ex	erci	se		Fi.	d	th	me	2	3×3	5	at.	àœ.	0	er	Ģ	2	•			•				
	· ·	3		\succ	3		• •	•	•				A	B,	С	whi	ìch	. 0	he	18	sts	ot	بر ، د بر	F(x)) · · ·	•	•		•	•		•••	•	•
					4						. 9	sati	shyi	~	B:	- A ²	-2	I -					A3.	+ A	-21									
• • •	• •	Q		0		<i>></i>	• •	•		.+	Lf ca	i's		Ş	C	B	-2	1	•	•			B	-B	-2	B -	I -	: D	•	•	•		•	•
			6	alois						940 C			• •		A	÷ Ç	-	2]	•				C-	+C ²	-2	?C-	1	=0). [
			Con	respe	mden	ce.		•					• •					• •							• •					•			•	•
· · · ·			• •	· · •	• •		· · ·	-			0		· · ·				•	• •	•	•		•	•	•	• •		•			•				
т. Т	£.	h (se	arable	dont exte	tusion	ebout 1 E20	ruis D	te(hn	legi	2 4 82 4	-	E:	Q	=	n		- fa	rre	ex	ists		₿€	E		Sul	h	the	t.	£	0	Ql	[β]	5
In a	The of		0	90				•		0		1			•	•	,	• •	•			•					•			•			N.	
(Theor	O an S	P Re	. Sim	do el	ament	or	si	nepl	e	ext	2asi	g.								0														
CILLU		1 no-		T			ie.	ė,	xte	Sid	~ 8	er	ited	· 6	z .	a	Sin	gle	.0	On	ent	F .	۰		• •		•		•	•	•		•	
Noto:	C	> R	is	a s	imple	exten	sion	,		C =	Ĩ	R[:1	·		•					P		•			<u> </u>	T.	5						
	R	> Q	· 13	not a	2 · . Si	uple é	exlo	uS	ipn	•	1	te	re.	ÎŜ	. 40	₽.	€ 1	Ň.	. 9	ar	S.	5 6	-	R R	4		IK E	(N.	•		•			
			0 0		0 0		• •		•		•	•	• •	•		•		• •	•			0		R	(4)	' - N	C		•		• •		
N	OV	EN	IBE	ER 2	202	24							. 1			. .																		
							•			7	Non	r	N	00		7 -	•	• •	•	•	• •	•	•	•	• •	•	•		•	٠	•		•	•
27 27	28	29	30 WED	31 31	FRI 1	SAT 2					Te	st					•						•				•							
				[•			• •			• •			•		• •	۰				٠		• •					٠	•	• •		
3	4	5	6	7	8	9	•	•	•		•		• •			•	•	• •	•			•		•		•		• •	•	•			•	•
10	11	12	13	14	15	16																												
17	18	19	20	21	22	23		•					• •					• •							• •				•		•		•	
''				2				•	•			•	• •	•	• •		•		•	•	• •		•	•		•	•		•				•	•
24	25	26	27	28	29	30																												
		www.	GrabCalend	dar.com						• •		•	• •					• •		•	• •				• •		•		•					•
										•			•		•			• •			•							• •				• •		

Given a number field E 2 Q of degree n= [E: 0] < 00, there exists BEE such that E= Q[B] The follows that
Given a number field $E \supseteq Q$ of legree $n = [E:Q] < \infty$, there exists $\beta \in E$ such that $E = Q[\beta]$ (Theorem of the Primitive Element : $E \supseteq Q$ is a simple extension). It follows that [Aut $E I \leq n$ Why? $I, \beta, \beta^2, \beta^2, \dots, \beta^n$ are linearly hereadent so $q_0 + q, \beta + q_2 \beta^2 + \dots + q_n \beta^n = 0$ for some
a, a,, a, ∈ Q, not all zero. Actually a, ≠0, otherwise 1, β, β,, β ² would generate the extension, a contradiction. After dividing by a, ≠0 we get
$f(x) = q_0 + q_1 x + q_2 x^2 + \dots + q_n, x^{n'} + x^n \in \mathbb{Q}[x]$ as the minimal polynomial of β . Over \mathbb{C} there exist $\beta_1, \beta_2, \dots, \beta_n \in \mathbb{C}$ such that
$f(x) = (x - \beta_1)(x - \beta_2) \cdots (x - \beta_n)$ $f(x) = (x - \beta_1)(x - \beta_2) \cdots (x - \beta_n)$ $f(x) = (x - \beta_1)(x - \beta_2) \cdots (x - \beta_n)$
$f(x) = (x - \beta_1)(x - \beta_2) \cdots (x - \beta_n)$ If $\tau \in Aut \in then \ \sigma \ number permite the n roots \beta_1, \dots, \beta_n$ $(but \beta_1, \dots, \beta_n \ and not necessarily in \in \mathbb{Q}[\beta].)$ $f' + q_{n-1}\beta^{n-1} + \dots + q_n\beta + q_0 = 0$ $f' + q_{n-1}\beta^{n-1} + \dots + q_n\beta + q_0 = 0$
$\beta + q_{n-1}\beta + \cdots + q_{n}\beta + q_{0} = 0$ $\Rightarrow 5(\beta^{n} + q_{n-1}\beta^{n} + \cdots + q_{n}\beta + q_{0}) = 0$
$\sigma(\beta)^{n} + q_{\mu}, \sigma(\beta)^{n-1} + \cdots + q_{n}\sigma(\beta) + q_{0} = 0$
⇒ 5(B) is a root of f(R). If B=B, B,, B, EE and B,, B, EE then there exist automorphisms mapping B=B, to any of B,, Br Behind this fact is the explanation coming from the First Isomorphism for Ring Theory ! 0.12 > DIOT
Behind this fact is in opportunity of the gradient of the gradient of the state of
The evaluation map $Q[x] \longrightarrow Q[x]$ is a honomorphism of rings. $g(x) \longmapsto g(x)$ is a honomorphism of rings. This map is onto, by definition, but not one-to-one. The barnel of this homomorphism is the principal ideal (f(x)) = {u(x)f(x) : u(x) \in Q[x]?. So $Q[x] = Q[x] = E$
principal deal $(f(x)) = \{u(x)f(x) : u(x) \in \mathbb{Q}[x]\}, > u(x) \in \mathbb{Q}[x] = u(x)f(x)$
· · · · · · · · · · · · · · · · · · ·

		way we	can evaluate	a ag a	we 31,	ret	to get	QIXI	frei)	Q[z;]
										(15i5r)
						 . .				
			Q[B] =	 (Q[β:]) 		· · · · ·				
			E E A A A A	E.						
This giv	es r isomer	phisms E.	\rightarrow E (1) rests of $f(x)$	Aut(E) = 1		n z .				
where	r is low me	ing of the	reats of f(x)	lie in E-	WLBJ. E. 20	 D∵is a	Golois exte	nsion	and	
when we have	a one-to-one	Galois Tux) corresponde	lie in E) the between ted roots?	Subfields	of E and	Subgr	onps of G	= Aut	E.	 1
Wait:	what if fi	(x) has repea	ted roots?	Is it possi	ible for an	. irredu	icible polys	omal	T(x) ~	10 Marie
repeated	roots?									A
	01 E 2 3	poprelle it	every irred	ucible poly	$f(x) \in F[x]$	las	only simple	roots	(no ment	Hiple
A fi roots)	dd F is s in any exte	epareble it	every inted	ucible polg	far) ∈ F[r]	las	only simple	roots	(no ment	ctiple
A fi roots) Theorem	what if the roots? dd F is s in any externa and is s	eparable it asion eparable	every inted	legree n	fn) ∈ F[n] ≈2. If	las	only simple	roots	(no ment	ctiple
Preof	let f(x)	EQ[x] L	z irreducible of	? degree n	¥2. Ìf ~	f(x) has	a repeated	roots	(no ment	ctiple
Preof	let f(x)	EQ[x] L	every, inted 2 inteducible of [x] of degree	? degree n	fin) ∈ F[n] ≥ 2. If Contine o	f(x) has	a repeated	roots	(no ment	ctiple
Preof	let f(x)	EQ[x] L	z irreducible of	? degree n	¥2. Ìf ~	f(x) has	a repeated	roots	(no ment	ctiple
Preof	let f(x)	EQ[x] L	z irreducible of	? degree n	¥2. Ìf ~	f(x) has	a repeated	roots	(no ment	ctiple