Fields

Book

Fields

Let *F* be a set containing distinct elements called 0 and 1 (thus $0 \neq 1$). Suppose addition, subtraction, multiplication and division are defined for all elements of *F* (except division by 0 is not defined). Thus a + b, a - b, ab, $\frac{a}{d} \in F$ whenever $a, b, d \in F$ and $d \neq 0$. Define -a = 0 - a.

If the following properties are satisfied by *all* elements $a, b, c, d \in F$ with $d \neq 0$, then F is a field.

a + b = b + a	a + (b + c) = (a + b) + c	ab = ba
a + 0 = a	a(bc) = (ab)c	1a = a
a + (-a) = 0	a(b+c) = ab + ac	$\frac{a}{d}d = a$
a + (-b) = a - b	u(b + c) - ub + uc	a

$Q^{2x^2} = \{2x \ge maturices order Q\} = \{[cd] : a,b,c,d \in Q\}$ is not a field.
$0 = \begin{bmatrix} 0 & 0 \end{bmatrix}, 1 = \begin{bmatrix} 0 & 1 \end{bmatrix}$ identify
A + D = A, A = IA = IA
[00] has no inverse. A[00]= I has no solution for A.
Moreorer, AB = BA in general.
Q ^{2x2} is a (non-commutative) ring with identity.
It has a subring $D = 2 \begin{bmatrix} 0 \\ 0 \end{bmatrix}$: a, d $\in Q$ is a commutative subring with identity.
But D is not a field since it has non-involutive elements. D has zero divisors: $[00][00] = [000]$. A field can rever have zero divisors. (If d is a zero divisor than $cd = 0$ where $c_1d \neq 0$ so $(\frac{c}{4})d = c \neq 0$, contradiction) For a commutative ring R with identify, $0 \cdot \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$ being able to divide is strongen than having no zero divisors. An example of a commutative ring with identify having no zero divisors but not a field (division fails in general) is Z
(If I is a zero divisor then ed=0 where ed=0 so (E) = e =0 contradiction)
$- \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
for a committative ring K with identity 0.1 = 7 a
An are all of a commutative ring with identity having no zero divisors but not a field
(division fails in general) is Z
$\frac{1}{\left[\frac{d}{d}\right]^{2}} = \frac{1}{\left[\frac{d}{d}\right]^{2}} = \frac{1}$
Eq F=) a a contracting 1 containing 2 contracting 2 contr
Eq. $F = \{ [ab a] : a \neq c \neq c = 0 \}$ If $[ab a] \neq [ab]$ then $[ab a] = \frac{1}{a+2b} [-2b a]$ (Note: $a-2b^2 \neq 0$ since $\sqrt{2} \notin Q$) atter atter Why is F a commutative subring? Elements of F have the form
if F a commutative subjug? Elements of F have the torn
$\begin{bmatrix} a & b \\ 12b & a \end{bmatrix} = aI + bS \text{where} I = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}, S = \begin{bmatrix} 2 & b \\ 2 & b \end{bmatrix} so F = \{aI + bS : a, b \in Q\} \text{ is the span of } \{I, S\}$
in Q ^{ex2} (Fis a 2-dimensional subspace of Q ^{2x2} a 4-dimensional vector space).

$(aI+bS)(cI+dS) = acI + (ad+bc)S + bdS^{2} = (cI+dS)(aI+bS)$ = (ac+ 2bd)I + (ad+bc)S	$S^{2} = \begin{pmatrix} 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 & 0 \end{bmatrix} = 2\mathbf{I}$	•
Compare: $K = \mathbb{Q}[\overline{12}] = \{a+b\overline{12} : a,b\in\mathbb{Q}\}$ is a field. $(a+b\overline{12}) + (c+d\overline{12}) = (a+c) + (b+d)\overline{12}$ $(a+b\overline{12})(c+d\overline{12}) = ac + (ad+bc)\overline{12} + 2bd = (ac+2bd) + (ad+bc)\overline{12}$ $Note: F \cong K$ (they are isomorphic) An explicit isomorphism $\phi: K \rightarrow F$ is given by $\phi(a+b\overline{12}) = [\overline{2}ba]$ $\phi(x+q) = \phi(x) + \phi(q)$ $\phi(xy) = \phi(x) \phi(q)$	2]= al+6S	
Similarly $\left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a \\ b \in \mathbb{R} \right\} \subset \mathbb{R}^{2^{KL}}$ is a subring isomorphism $\mathbb{C} \longrightarrow \left\{ \begin{bmatrix} a & b \\ -\gamma & \beta \end{bmatrix} : a \\ b \in \mathbb{R} \right\}$ is $a + b \\ i = 1$	luc to \mathbb{C} . $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ $(a_1 b \in \mathbb{R})$.	•
		•

$Q[JZ] = \{a+bJZ : a \in Q\}$	
$k = 5 + 3\sqrt{2}, \beta = 7 - \sqrt{2}$	
$\begin{array}{l} \alpha+\beta \ = \ 12 + 2\sqrt{2} \\ \alpha-\beta \ = \ -2 + 4\sqrt{2} \end{array}$	
$(2^{2})^{2} = $	
$\alpha \beta = (5+3\sqrt{2})(7-\sqrt{2}) = 35 - 5\sqrt{2} + 2\sqrt{2} - 6 = 29 + 16\sqrt{2}$	
$\frac{x}{\beta} = \frac{5+3\sqrt{2}}{7-\sqrt{2}} = \frac{5+2\sqrt{2}}{7-\sqrt{2}} = \frac{7+\sqrt{2}}{7+\sqrt{2}} = \frac{35+5\sqrt{2}+2\sqrt{2}+6}{47} = \frac{41+26\sqrt{2}}{47} = \frac{41}{47} + \frac{26}{47}\sqrt{2}$	
	•
Alternatively, $\frac{\alpha}{\beta} = \alpha \beta^{2}$ [53] [7] [] [4] 26]	
$\begin{bmatrix} 5 & 3 \\ -1 \end{bmatrix} \begin{bmatrix} 7 & 1 \\ -1 \end{bmatrix} = \frac{1}{47} \begin{bmatrix} 41 & 26 \\ -1 \end{bmatrix}$	•
Alternatively, $\vec{p} = \vec{k}\vec{p}$ in matrix representation: $\begin{bmatrix} 5 & 3 \\ 6 & 5 \end{bmatrix} \cdot \frac{1}{77} \begin{bmatrix} 7 & 1 \\ 2 & 7 \end{bmatrix} = \frac{1}{77} \begin{bmatrix} 41 & 26 \\ 52 & 41 \end{bmatrix}$	
$\beta \mapsto \begin{bmatrix} 7 & -1 \\ -2 & 7 \end{bmatrix}$	•
$\beta' \mapsto \frac{1}{4\pi} \begin{bmatrix} 7 & 1 \\ 2 & 7 \end{bmatrix}$	•
Similar: $Q[3\overline{2}] = Q[\vartheta]$, $\vartheta = 3\overline{2}$.	
Sa+60: ab C is not a field, not even a ring, since it's not closed under	
$\{a+b0: a, b\in Q\}$ is not a field, not even a ring, since it's not closed under $Q[P] = \{a+b0+c0^2: a, b, c\in Q\}$ is a field. $O^3 = 2$ $Q^4 = 2P$	•
$\theta^{T} = 2\theta$	•
$k = 5 + 30 \qquad \alpha + \beta = 12 + 20 \qquad \beta^{5} = 20^{2} \\ \beta = 7 - 0 \qquad \alpha - \beta = -2 + 40 \qquad \beta^{6} = 4 \\ \theta^{6} = 4 \qquad \beta^{6} = 4$	
$\beta = 7 - \theta$ $\alpha - \beta = -2 + 4\theta$ $\theta^{\circ} = 4$	•
$\beta = 4 - \theta \qquad (3 - \beta - 2 + 16) = 35 - 50 + 210 - 30^{2} \qquad \theta^{2} = 4$ $\alpha \beta = (5 + 30)(7 - 0) = 35 - 50 + 210 - 30^{2} \qquad \theta^{2} = 4$ $= 35 + 160 - 30^{2}$	•

$\frac{\alpha}{\beta} = \frac{5+3\theta}{7-\theta} = \frac{1}{1}\left(251 + \frac{1}{1}82\theta + \frac{2}{2}\theta^{2}\right) = \frac{25(1+\frac{1}{3}2\theta)}{34(1+\frac{3}{3}4\theta)} + \frac{26}{34(1+\frac{1}{3}2\theta)} + \frac{26}{34(1+$	Ø= 2
B 7-0 + T 0 K 341 341	<u>0²-2</u> =
$\theta = 3\sqrt{2}$ $a_1b_1 c \in \mathbb{R}$ $\theta \text{ is a not of } x^3 - 2 = (x - \theta)(y)$	(² + 9x+ 9 ²)
$5+3\theta = (a+6\theta+c\theta^2)(7-\theta)$	R
$= (7a - 2c) + (7b - a)\theta + (7c - b)\theta^{2}$	QUE PIA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-7 26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{1}{26}$
	· · 341 J
$-2 + d G \frac{26}{26}$ $ 023$ $ 000 \frac{100}{28}$ $ 000 \frac{251}{347}$ $ 000 \frac{251}{347}$ $ 000 \frac{251}{347}$ $ 000 \frac{251}{347}$	
$-3 + \sqrt{9 \cdot \frac{26}{341}}$ [0 0 1] $\frac{26}{341}$]	
(11)	$157 + 1023\theta + 0\theta^2$
	/
- 1073 + 1274 251 - 341	(705 + 1023 0)
$= -\frac{1023 + 1274}{341} = \frac{251}{341}$ $Q[\theta] \text{ is a cubic field} = 5+3$ $extension of R : it is a$ $3 - dimensional vector space over R, u$	
extension of Q: it is a	it basis 1, 0, 02
3 - dimensional vector space over ux,	e e e e e e e e e e

Alternatively, use 3x3 matrices to represent elements of Q[0].
Take $T = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \end{bmatrix}$ to represent ϑ . $T^3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 \end{bmatrix} = 22$
$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2e & 2k \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2e & 2k \\ 0 & 2e & 2k \end{bmatrix} = abc \in \mathbb{R} \xrightarrow{3\times3}$
$E = \left\{ aI + bT + cT^{2} : a, b, c \in Q \right\} = \left\{ \begin{bmatrix} a & 2e & 2b \\ b & a & 2e \\ e & b & a \end{bmatrix} : a, b, c \in Q \right\} \subset Q^{3x^{3}}$ woncommutative
ning with identity
Q[0] ~ E via the isomorphism a field.
_W Ø
$a+60+c0^{2} \rightarrow aI+bT+cT^{2}$
iller of and Q[0] ?
Are those any fields between Q and Ulver,
Are there any fields between R and C!
Are there any fields between R and C! Suppose RCFC is a tower of fields (Fis a subfield of C and R is a Suppose RCFC is a tower of fields, I have a subfield of C and R is a
Are there any fields between R and C? Suppose R C F C I is a tower of fields (F is a subfield of C and R is a subfield of F). C VS C 'C' always means strict containment in subfield of F).
Are there any fields between R and C? Suppose $R \subseteq F \subseteq U$ is a tower of fields (F is a subfield of C and R is a Subfield of F). $\subseteq VS \subseteq C$ 'C' always means strict containment in subfield of F). $\subseteq VS \subseteq VS \subseteq C$ 'C' always means strict containment in $\leq VS \subseteq VS $
Are those any fields "between" Q and Q[F2], or between Q and Q[O]? Are there any fields between "R and C? Suppose $R \subseteq F \subseteq C$ is a tower of fields (F is a subfield of C and R is a subfield of F). $\subseteq *S \subset$ 'C' always means strict containment in subfield of F). $\subseteq *S \subset$ 'C' always means strict containment in Subfield of F). $\leq *S \subset$ 'C' always means strict containment in Subfield of F). $\leq *S \subset$ 'C' always means strict containment in Subfield of F). $\leq *S \subset$ 'C' always means strict containment in Subfield of F). $\leq *S \subset$ 'C' always means strict containment in Since FDR, there exists $x \in F$, $x \notin R$. Then α , 1 are linearly independent over R,
Are there any fields between R and C' Suppose $R \subseteq F \subseteq C$ is a tower of fields (F is a subfield of C and R is a Subfield of F). $\subseteq *S \subseteq C$ 'C' always means strict containment in subfield of F). $\leq *S \subseteq C$ 'C' always means strict containment in Since $F \supset R$, there exists $x \in F$, $x \notin R$. Then $\alpha, 1$ are linearly independent over R, is $\alpha \neq \alpha, 1$ for any $\alpha \in R$, there C is 2-dimensional over R with basis 1, i
Are there any fields between R and C' Suppose $R \subseteq F \subseteq C$ is a tower of fields (F is a subfield of C and R is a Subfield of F). $\subseteq VS \subseteq C$ 'C' always means strict containment in subfield of F). $\subseteq VS \subseteq C$ 'C' always means strict containment in Since $F \supset R$, there exists $x \in F$, $x \notin R$. Then $x, 1$ are linearly independent over R, i.e. $a \neq a \cdot 1$ for any $a \in R$. However C is 2-dimensional over R with basis 1, i i.e. $a \neq a \cdot 1$ for any $a \in R$. However C is 2-dimensional over R with basis 1, i (average complex number is uniquely expressible as $Z = a \cdot 1 + b \cdot i$ with $a, b \in R$). So $1, \pi$ is a
Are there any fields between R and C! Suppose R C F C C is a tower of fields (F is a subfield of C and R is a Suppose R C F C C is a tower of fields (F is a subfield of C and R is a subfield of F). C vs C 'C' always means strict containment in subfield of F). So X X Since F D R, there exists x e F, x & R. Then x, 1 are linearly independent over R, i.e. x ≠ a.1 for any ac R. However C is 2-dimensional over R with basis 1, i (every complex number is uniquely expressible as Z= a.1+b.i with a, b e R). So 1, x is a hasis for F. So F= C.
Are there any fields between R and C! Suppose $R \subseteq F \subseteq C$ is a tower of fields (F is a subfield of C and R is a subfield of F). $\subseteq rs \subseteq C$ 'C' always means strict containment in subfield of F). $\subseteq rs \subseteq C$ 'C' always means strict containment in Subfield of F). $\subseteq rs \subset C$ 'C' always means strict containment in Subfield of F). $\subseteq rs \subset C$ 'C' always means strict containment in Subfield of F). $\subseteq rs \subset C$ 'C' always means strict containment in Subfield of F). $\subseteq rs \subset C$ 'C' always means strict containment in Subfield of F). $\subseteq rs \subset C$ 'C' always means strict containment in Subfield of F). $\subseteq rs \subset C$ is 2-dimensional over R with basis 1, i (every complex number is uniquely expressible as $z = a \cdot 1 + b \cdot i$ with $a, b \in R$). So 1, a is a hasts for F. So $F = C$.
Are there any fields between R and C' Suppose R E F C C is a tower of fields (F is a subfield of C and R is a Subfield of F). E vs C 'c' always means strict containment in subfield of F). S v < Since F D R, there exists we F, v & R, then v, 1 are linearly independent over R, i.e. a ≠ a.1 for any ac R. However C is 2-dimensional over R with basis 1, i (every complex number is uniquely expressible as Z= a.1+b.i with a, b < R). So 1, a is a basis for F. So F= C.
Since $F \supset R$, there exists $x \in T$, $x \notin R$. Then $\alpha, 1$ are included such the field of the fi
Are there any fields between R and C! Suppose R C F C C is a tower of fields (F is a subfield of C and R is a Subfield of F). C & C 'C' always means strict containment in subfield of F). C & K C 'C' always means strict containment in flis conse. Since F D R, there exists $K \in F$, $K \notin R$, then K, I are linearly independent over R, i.e. $K \neq a.I$ for any $a \in R$, therewere C is 2-dimensional over R with basis I, i (every complex number is uniquely expressible as $Z = a.I + b.i$ with $a, b \in R$). So I, K is a hasis for F. So $F = C$.
Since $F \supset R$, there exists $x \in T$, $x \notin R$. Then $\alpha, 1$ are indeally independent over R , in β , i.e. $\alpha \neq \alpha, 1$ for any $\alpha \in R$. However C is 2-dimensional over R with basis $1, i$ (every complex number is uniqually expressible as $Z = \alpha \cdot 1 + b \cdot i$ with $\alpha, b \in R$). So $1, \alpha$ is a basis for F . So $F = C$.

to these any field extension CCF with F 2-dimensional over C ?
Is these any field extension CCF with F 2-dimensional over C ? No, but there do exist fields FDC which are infirite dimensional extensions.
Consider the ring (x) = & polynomials in x with complex coefficients }
$= \begin{cases} q_{+} + q_{x} + q_{x}^{2} + \cdots + q_{n} x^{n} : q \in \mathbb{C}, n \ge 0 \end{cases}$
This is a ring but not quite a field eq. $= \{ q_0 + q_1 x + q_2 x^2 + \dots + q_n x^n : q_i \in \mathbb{C}, n \ge 0 \}$
$5 + 7x + 3x^2$
$\frac{5+7x+3x^2}{3-(4+i)x+43x^2} \notin \mathbb{C}[x]$
C(x) = field of fractions of C[x] = field of notional functions in x with complex coefficients
The life motive to from Z
Another example of this We'll construct a compably infinite subfield of the containing T.
Another example of this We'll construct a compably infinite substated of the continuing "
Another example of this: We'll construct a completely infinite subtract of the continuing " This contains the subring $Q[\pi] = \int a_0 + a_1\pi + a_2\pi^2 + \dots + a_n\pi^n$: $n \ge 0$, $a_i \in O$ $\pi \in O[\pi]$ has no (multiplicative) inverse in $Q[\pi]$ since if
Another example of this: We'll construct a completely infinite subtract of the continuing " This contains the subring $Q[\pi] = \int a_0 + a_1\pi + a_2\pi^2 + \dots + a_n\pi^n$: $n \ge 0$, $a_i \in O$ $\pi \in O[\pi]$ has no (multiplicative) inverse in $Q[\pi]$ since if
Another example of this: We'll construct a combably intiated subtract of a nonzero polynomial $q_n x^n + q_n x^n + $
Another example of this: We'll construit a courtably intinit subject of the containing " This contains the subring $\mathbb{Q}[\pi] = \int a_0 + q_1\pi + q_2\pi^2 + \dots + q_n\pi^n$ is $n \ge 0$, $q_i \in \mathbb{Q}_i^2$ $\pi \in \mathbb{Q}[\pi]$ has no (multiplicative) inverse in $\mathbb{Q}[\pi]$ since if $1 = \pi (q_0 + q_1\pi + q_2\pi^2 + \dots + q_n\pi^n) q_i \in \mathbb{Q}, n \ge 0$, a contradiction since π is transcendental. (π would be a not of a nonzero polynomial $q_n\pi^n + q_n\pi^n +$
Another example of this: We'll construct a completely infinite subtract of the continuing " This contains the subring $Q[\pi] = \int a_0 + a_1\pi + a_2\pi^2 + \dots + a_n\pi^n$: $n \ge 0$, $a_i \in O$ $\pi \in O[\pi]$ has no (multiplicative) inverse in $Q[\pi]$ since if

Q C R C C countable incontable incontable Q = { a, a, a, a, a, ... 9,+9,7 9,+827 9,+937 ... 9,+9,8 9,+828 9,+937 ... A = {algebraic mulers} $Q \subset A \subset C$ 93+9,x 9,+9x 4,+9,x ... QCAAR C contable incontable. -3 -2 -1 0 1 2 $Q(\pi)$ is a countedly intiate ving so $Q(\pi)$ is a countably intiate field. Elements of Q(TT) CR look like $\frac{53.8 \pi^{2} - 17\pi + \frac{53}{7}}{42\pi^{2} + 119\pi + \frac{103}{648}}$ $\begin{array}{c} 42\pi^2 + 119\pi + \frac{103}{648}\\ \text{Conspare: } \mathbb{Q}(e) \subset \mathbb{R} \text{, another countable subfield of } \mathbb{R}.\\ \text{Actuelly } \mathbb{Q}(e) \cong \mathbb{Q}(\pi) \text{. An isomorphism is } f(e) \longmapsto f(\pi) \text{ where } f(\pi) \in \mathbb{Q}(\pi)\\ \text{Actuelly } \mathbb{Q}(e) \cong \mathbb{Q}(\pi) \text{. An isomorphism is } f(e) \longmapsto f(\pi) \text{ where } f(\pi) \in \mathbb{Q}(\pi)\\ \cong \mathbb{Q}(\pi) \text{. (x being an indeterminate is. an abstract symbol generic } generic.} \end{array}$ Q(x) -> Q(r) evaluation doesn't quite work eg. the image of $\frac{x^3+7x^2-3}{x^2-2} \in \mathbb{Q}(x)$ is undefined; for can't evaluate this at $\sqrt{2}$. $Q(\mathbf{x}) \longrightarrow Q(\mathbf{e})$ $Q(x) \longrightarrow Q(Jz)$ But $Q[x] \rightarrow Q[\pi]$ the evaluation Q[x] -> Q[e] $\pi_{,e,Jz,\cdots} \otimes [x] \longrightarrow \bigotimes [Jz]$

* Suppose F, K are fields. If $\phi: F \rightarrow K$ is a ring homomorphism then either (i) $\phi(F) = \{0\}$ i.e. $\phi(e) = 0$ for all $e \in F$, or (trivial)Any homomorphism ϕ is one-to-one i.e. $\phi(F) \subseteq K$ is a subfield isomorphic to F. $Q(x) \longrightarrow \mathbb{R}$ is either trivial or it has the form $Q(x) \longrightarrow Q(a)$, $f(x) \longrightarrow f(a)$ is an evaluation at some transcendentel unifier $a \in \mathbb{R}$. We have homomorphisms $\mathbb{Q}[\pi] \longrightarrow \mathbb{C}^{n \times n}$ (n \times n complex metrices) where we evaluate at a metrix $A \in \mathbb{C}^{n \times n}$, i.e. $f(x) \leftrightarrow f(A)$ 47×2+ 18×-14 → 47 A2+ 18A- 41 I (#) In a field F, every ideal is either for An automorphism of e field F is an isomorphism φ: F→F. Eg bijective with (i) Automorphisms of Q[se] ? We want φ: Q[se] → Q[se] bijective with φ(a+b) = φ(a) + φ(b), φ(ab) = φ(a) φ(b). · The identity $\phi(x) = x$ for all $x \in \mathbb{Q}[\sqrt{2}]$ (This is algebraic conjugation, not complex conjugation). · Conjugation \$(a+b)= a-b) for all a, be Q These are the only attomorphisms of Q[vi).

If $\phi: F \rightarrow F$ is any automorphism of a field F then $\phi(o) = \phi(o+o) = \phi(o) + \phi(o) \Rightarrow \phi(o) = o$ $\phi(o) = \phi(o+o) = \phi(o) + \phi(o) \Rightarrow \phi(o) = o$ Multiply both sides
$\phi(\alpha) = \phi(\alpha + \alpha) = \phi(\alpha) + \phi(\alpha) \implies \phi(\alpha) = \alpha$
$f(1) = f(1) = \phi(1) \cdot \phi(1)$ where $\phi(1) + \psi$ since $\phi(1) + \psi$
by $\phi(1)' \to get \phi(1) = 1$. If $m, n \in \mathbb{Z}$ with $n \neq 0$,
$f(x) = f(x+y) = \phi(y) + \phi(y) = 1 + (x+y) = \phi(y) = \phi(y) = w$
$\phi(3) = \phi(2+i) - \phi(2) + \phi(i) = 2+i = 3 \qquad \phi(a) \phi(\underline{m}) = \phi(\underline{m}) - \underline{m}, \qquad So \phi(x) - x \text{for all } x \in \mathbb{Q}.$
$S_0 = 3 + (-3) = 0$ $\phi(3) + \phi(-3) = \phi(0) = 0$
$\phi(3) + \phi(-3) = \phi(0-b)$
3 - 5
$(\overline{a})^2 = \phi(\overline{a}^2) = \phi(\overline{a}) = 2 \Rightarrow \phi(\overline{a}\overline{a}) = \pm \sqrt{2}$ for all about the formal about
$T_{1} - \sigma(5) = 12$ $T_{1} = 0$ $\varphi(\alpha + \alpha) = - \varphi(\alpha + \gamma) = - \varphi(\alpha + \gamma) = - \varphi(\alpha + \gamma) = \varphi(\alpha + \gamma) = $
If $\phi(J_{\overline{e}}) = -J_{\overline{e}}$ then $\phi(a + b_{\overline{e}}) = \phi(a) + \phi(b) \phi(J_{\overline{e}}) = a + b(J_{\overline{e}}) = a - b_{\overline{e}}$
If F is any field then Aut F = Eall automorphisms of F3 is a group under composition. Its identify is a where $i: F \rightarrow F$, $i(x) = x$ for all $x \in F$ (the identity map).
Hs identify is a where $i: F \rightarrow F$, $l(x) = x$ for all $x \in F$ (the identity map).
Aut 🔿 = \$13 to Arivial
Aut R = E13 is trivial but my
Q[J2] CR has two automorphisms.
Aut Q[52] is a group of ordin 2.
Aut Q[52] is a group of order 2. Aut Q contains i and $\tau = complex conjugation, \tau(a+bi) = a-bi - Brall a, b \in R.But Aut Q is uncomtable. C has uncomtably many automorphismsBut Aut Q is uncomtable. C has uncomtably many automorphismsThe only continuous automorphisms of C are 1, T.$
But Aut C is uncontable. C has uncontaky many anomorphisms
The only continuous automorphisms of C are 1, T

The conjugation & E Ant Q[Jz] defined by \$ (2+6) = 2-6) a (2,6 EQ) is badly discontinuous i single graph of ø & is bedly discontinuous. $\iota: Q[\overline{z}] \to Q[\overline{w}_{z}]$ is continuous R(x) = { rational functions of x with real coefficients } is a field. Can we replace "rational functions" with "functions" or "continuous functions" R-> R { functions R -> R } & continuous functions R-> R? are rings with zero divisors so they are not fields. $f_2(x) = \begin{cases} 0 & if \\ 1 & x_{0} \\ x, & if \end{cases}$ $(x) = \begin{cases} x & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$ Commitative rings with identity under pointavise multiplication. Ph=0 x≤o f, f2=0 but f, f2 are vonzero functions.

How do we check that $f(x) \in \mathbb{Q}[x]$ is irreducible (i.e. in $\mathbb{Q}[x]$)? eg. $f(x) = x^4 + x^2 + x + 1$ bd =1 implies b=d=±1. If b=d=1 then If $f(x) = (x^2 + ax + b)(x^2 + cx + d)$ then $f(x) = (x^2 + ax + 1)(x^2 - ax + 1)$ has no x term, a contradiction. degree 2 degree 2 in $\mathbb{Z}[x]$ in $\mathbb{Z}[x]$ $q, b, c, d \in \mathbb{Z}$ If b=d=-1 then $f(x) = (x^2 + ax - i)(x^2 - ax - i)$ has no x term again a contradiction. then al=1 so $a=d=\pm 1$, but f(1)=4 g go ± 1 are not roots f(-1)=2 of f(x). If $f(x) = (x + a)(x^3 + bx^2 + cx + d)$ where $a, b, c, d \in \mathbb{Z}$ So fix) is irreducible in Z[x]; so fix) is irreducible also in Q[x]. Why do we care about automorphisms of fields? Historically the study of fields originated in questions about finding roots of polynomials. The roots of ax^2+bx+c ($a\neq 0$) are $-b\pm Jb^2-1ac$ S: 1 and 10 1 2 20 Similarly the roots of ax³+bx²+cx+d are given explicitly using formulas of a,b,c,d using +, -, x, - and extending guase roots and use roots. Similarly for plynomials of degree 4. But for degree 75, no such formula exists The reason is found in group theory. Galois theory gives the connection botwen fields and The reason is found in group theory. Galois theory gives the connection botwen fields and subset of the roots lie in F = Q(r, ..., r_n) C C. Let G = Aut F. G pormites is functioned for a subgroup of S.) order "!

If F is a field then F[a] = ring of all polynomials in a with	all coefficients in F.
= the smallest ring containing t an	nd a
F(a) = the field of all rational functions in the smallest field extension of F	a with construction of a
You can do all this for more than one element a e.g. F[a,,q_1] = the ring of all polynomials in a,	, gk with coefficients in F
= the success ring containing	
= the ring generated by F, a,, 9k F(a,, 9k) = the field extension of F generated by	a,, qk together with F.
eg. $Q[IZ] = \{a_0 + a_1 \overline{z} + a_2 \overline{z}^2 + a_3 \overline{z}^2 + \dots + a_1 \overline{z}^2 : m \ge 0, q \in Q\} = \{a + b \overline{z} = Q[IZ] \$ Q(IZ) = Q[IZ] since IZ is elgebraic. $P(IZ) = Q[IZ] Since IZ or D[IZ] = Sa + 1 \sqrt{z} + c \sqrt{z} + d \sqrt{10} : a = 1$	
$Q(JZ) = Q[JZ]$ since VZ is $Q[JZ, JS] = \{a + bJZ + cJS + bJD : a, b$ $Q[JZ, JS]$ is this a field? $Q[JZ, JS] = \{a + bJZ + cJS + bJD : a, b$ $eq \alpha = \sqrt{2} + \sqrt{5} \in Q[JZ, IS]$ is a root of a polynomial $f(x) \in Q[x]$, in	$fect f(x) \in \mathbb{Z}[x].$
In fact $\alpha \notin \Omega$ (why?)	x=12+15 (andidale: x-14x+9
	$d=7+2\sqrt{10}$ You can check that this $q^2-7=2\sqrt{10}$ ply is irred in $Q[x]$
IL VIL SCALLE FOR THE TOP THE THE TOP	$x - 14x^{2} + 49 = 40$ (using stops we used on $x^{4} - 14x^{2} + 9 = 0$ Forday Sept 13).
Part of an = u(x) f(x) for some u(x) = u(x) then	If r(x) =0 then take d(x) = gcd (f(x), r(x)) = q(x) f(x) + b(x) r(x) by Euclid's Algorithm
$g(\alpha) = u(\alpha)f(\alpha) = 0$ i.e. $g(x)$ is a poly. with coeffs in Q having a as a not. Conversely, suppose $g(x) \in Q[x]$ having day $f(x) = Q[x]$ and $f(x) = Q[x]$	4. Euclid's Algorithm d (a)= a(a) f(a) + b(a) r(a) = 0.
having a as a root. Conversely, suppose $g(x) \in U(x)$ have $q(x) = q(x)f(x) + r(x)$ with $q(x), r(x) \in Q(x)$, $dq r(x) < Now g(x) = q(x)f(x) + r(x) = 0 = 7 r(a) = 0.$	T. Contradiction since A(x) is irreducible in Q(x).
	and the second

		ъ́	÷.,	· · ·	C			ab	eb	mic		(•	×.	is	à	í fec	f i	£	Ćol	eff	ici	ent	: 7	n	Q)	-	the		Her	e i	is .	a	M	ini	ma	l' .	pol	yuz	min	l	• •			
	1	4 r				-		e	C		Port	. 1	leg	ree		wh	st : ich	îs	mo	nic	j.	e.	Æ	; [(eau	tin	9	coe	₩.	ís	1	•	្រ	nigu	L			ν κ							
	M	(x))	D	2D	4	. o	1					Q																																
	<u>, </u>	-		<u>.</u> .	r	. .	.0		0	6		6				F - 1	43 L	a																											
	<u> </u>	he.	. M	Lini	nal	< . f	مع	1 - 1	ot	12	- + 1	15			- X	- '	fx +	1																											
																	• •																												
				• •																						•	• •							•					• •						
•			•	• •				• •									• •									•	• •			•		٠		•				•							•
•			•	• •		•		• •				•	•	• •			• •			•		• •				•	• •	•		•	• •			•				•	• •			• •	•		
			•	• •				• •									• •					• •				•	• •		•	•	• •	٠		•				•				• •			•
	•		•	• •		•	•	• •				•	•	• •			• •			•		• •		•		•	• •	•		•	• •			•				•	• •			• •			
•			•	• •				• •				•					• •			•		• •	•			•					• •			•				•	• •			• •			
		•	•	• •		•	•	• •				•	•	• •			• •					• •				•	• •	•		•	• •							•	• •			• •			
			•			•						•					• •					• •					• •				• •			• •				•							
			•	• •			•	• •				•		• •			• •	•			•	• •			•		• •			•	• •							•				• •			
								• •			•		•		•		• •										• •			•						•					•				
			•				•	• •				•	•				• •				•			•			• •	•		•	• •														
																	• •																												
																	• •										• •							•					• •						
				• •				• •									• •			•		• •				•	• •				• •			•				•						•	•
				• •				• •					•	• •			• •					• •		•	•	•	• •			•	• •			•				•				• •			•
				• •				• •					•	• •			• •					• •		•	•	•	• •			•	• •			•				•				• •			•
				• •																		• •									• •								• •						