Fields

Fields

Let F be a set containing distinct elements called 0 and 1 (thus $0 \neq 1$). Suppose addition, subtraction, multiplication and division are defined for all elements of F (except division by 0 is not defined). Thus $a + b$, $a - b$, ab , $\frac{a}{d} \in F$ whenever $a, b, d \in F$ and $d \neq 0$. Define $-a=0-a$.

If the following properties are satisfied by all elements a, b, c, $d \in F$ with $d \neq 0$, then F is a field.

Q C R C C $Q = \{a_1 a_2, a_3, a_4, \}$ uncountable uncountable $9+9x$ $9+9x$ $9+9x$. $Q \subset A \subset C$ $A = \{ algebraic \text{ numbers} \}$ 9197 9198 9198
3 9198 9198 9198 9198
C 9198 9198 9198 9198 $a_5 + a_1 x$ $a_5 + a_2 x$ $a_7 + a_6 x$. countable meountable. Q C A NR c^A \circ $Q \subset R \subset C$

countrile incondelle meandale
 $Q \subset A \subset C$

countrile incondelle
 $Q \subset A \cap R$
 $Q \subset A \cap R$
 $Q \subset R$
 $Q \subset R$, another countrile subfield of

Compare $Q(e) \subset R$, another countrile subfield of Elements of Q(T) CR look like s_o Q(T) is a countably infinite ring ments of $W(\pi)$
53.8 π - $17\pi + 7$ $2 - 2 - 1$
 $2 - 1 = 1$
 $\frac{\pi^2 - 17\pi + 27}{\pi^2 + 119\pi + 275}$ Elements $\frac{17\pi + \frac{63}{107}}{119\pi + \frac{103}{107}}$

(D(e) C R (0)

g (D(e) = 0 $\begin{array}{lll} \epsilon_0&\mathbb{Q}(\pi)&\hbox{if a countable} &\hbox{field.} \ \end{array}$
another countable subfield of R.
 $\mathcal{C}(\pi)$. An isomorphism is fle) \Rightarrow fl π) where f(x) $\in \mathbb{Q}(\pi)$.
 $\mathbb{Q}(\pi)$ (x being an indeterminate ie. an abstract symbol) generic $\begin{array}{ccc} \mathcal{U}_1 & \mathbb{Q}(e) \cong \mathbb{Q}(e) & \mathbb{A}^n & \text{isomorphism} \ & \mathbb{Q}(x) & \mathbb{Q}(x) & \mathbb{Q}(x) \end{array}$ Q(x) -> Q(T)
Q(x) -> Q(T) $Q(x) \longrightarrow Q(\pi)$ evaluation
 $Q(x) \longrightarrow Q(\overline{x})$ doesn't quite work eg .
 $Q(x) \longrightarrow Q(\overline{x})$ doesn't quite work eg . the inage of $\frac{x^3 + 7x - 3}{x^2 - 2} \in \mathbb{Q}(\pi)$ is undefined; you $\frac{k^2-3}{2} \in \mathbb{Q}(k)$ is underfined the set of $\frac{2}{k}$ evaluate this at $\sqrt{2}$ $Q(x) \longrightarrow Q(\overline{x})$
 $Q(x) \longrightarrow Q(\overline{x})$
 B_{x}
 $B[x] \longrightarrow Q[\overline{x}]$ Il well-defined ring homomorphisms. $Q(x) \longrightarrow Q(x)$
 $Q[x] \longrightarrow Q[x]$
 $Q[x] \longrightarrow Q[x]$
 $Q[x] \longrightarrow Q[x]$ $\pi, e, \sqrt{2}$ $Q[x] \longrightarrow Q[x]$

If ϕ : $R \rightarrow S$ where RS are rigs, we say ϕ is a ring homomorplism if $\phi(ab) = \phi(a)\phi(b)$ $\phi(a+b) = \phi(a) + \phi(b)$? For all $a,b \in \mathbb{N}$
We don't necessarily require $\phi(1) = 1$; and in general the rings RS may not have identity. We don't necessarily regard $\varphi(t) = 1$ and θ are eight consider only homomorphisms F R, S are rings with identity ($1_e \in$
of rings with identity i.e. $\phi(1_p) = \phi(1_s)$. of rings with identity is $p(p) = p(s)$.
* Suppose F.K are fields. If ϕ : $F \rightarrow K$ is a ring komonorphism then either $\cos z$ $\pm K$ are treas. If φ
(i) φ (F) = {0} ie φ (a) = ϵ for all at f Suppose F K are fields. If $\phi: F \rightarrow K$ is a ring komomorphism to (i) $\phi(F) = \{o\}$ i.e. $\phi(e) = \circ$ for all ee F , \overline{e} (trivial) \overline{e} (trivial) A (i) ϕ is one-to-one i.e. $\phi(F) \subseteq K$ is a substituded isomorphic to F.
Any homomorphism is either frivial or it has the form $Q(x) \longrightarrow Q(a)$, $f(x) \mapsto f(a)$ is an evaluation $Q(x)$ - R is either frivial or it has the form $Q(x)$ -> $Q(a)$, $f(x) \rightarrow f(a)$
 $Q(x)$ -> R is either frivial or it has the form $Q(x)$ -> $Q(a)$, $f(x) \rightarrow f(a)$

at some transcendental number $a \in \mathbb{R}$.

We have non-organisms $Q[\over$ ring $Q(x) \rightarrow \mathbb{R}$ is einer trivial $a \in \mathbb{R}$.
at some transcendantal unmber $a \in \mathbb{R}$. (nxn complex natrices)
we have homomorphisms $Q[x] \rightarrow C^{n_{x_n}}$ (nxn complex natrices) # In ^a field An anomorphism of ^a field ^F is $x = A$
 $x = A$
 $y = A$
 $y = A$ $e^{\frac{2\pi}{3}+\frac{1}{\pi}x-\frac{1}{7}}$
every ideal is either $\{0\}$ or F. 1) Automorphisms of QGEJ? $\phi(a + b) = \phi(a) + \phi(b)$, $\phi(ab) = \phi(a) \phi(b)$. · The identity $\phi(x) = x$ for all $x \in \mathbb{Q}[\sqrt{x}]$ Conjugation platte) = a-bie for all a, be Q. (This is algebraic conjugation, not complex

The conjugation $\phi \in$ At Q[$s_{\overline{z}}$] defined by ϕ (exote) = $a - b\overline{r}$ (a, $b \in \mathbb{Q}$) is badly discontinuous graph of p $\sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2$ of is badly $L: \mathbb{Q}[\sqrt{z}] \rightarrow \mathbb{Q}[\sqrt{z}]$ is continuous R(x) = { rational functions of x with real coefficients } Hicroads } is a field R-> R $\{$ functions $R \rightarrow R$ } & Continuous functions R->R? are ringe with zero divisors so they $f(x) = \begin{cases} 0 & \text{if } \\ 0 & \text{if } \\ 0 & \text{if } \end{cases}$ $f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ 0, & \text{if } x \le 0 \end{cases}$ Commitative rings with identity f x, if $x₀$ $f_1 f_2 = 0$ but $f_1 f_2$ are venters functions.

How do we check flat $f(x) \in \mathbb{Q}[x]$ is irreducible (i.e. in $\mathbb{Q}[x]$)? $eg: f(x) = x^4 + x^2 + x+1$
 $eg: f(x) = x^4 + x^3 + x+1$ If $f(x) = (x^2 + ax + b)(x^2 + cx + d)$ then $\vert d\vert = 1$ implies $\vert b=d=\pm 1$. If $\vert b=d=1$ then $x^4 + x^2$
 $x^2 + ax$ degree 2 degree 2 $f(x) = (x^2 + ax + 1)(x^2 - bx)$ ax ⁺ 1) has no x term , ^a contradiction. $\frac{d}{dx}$ in $\frac{d}{dx}$ in $\frac{d}{dx}$ in $\frac{d}{dx}$ is $\frac{d}{dx}$ b=d =-1 then a, b, c , $d\epsilon \ge \frac{d\epsilon}{d\epsilon} = \frac{d^2\epsilon}{f(x)} = \frac{f(x)}{f(x)} = \frac{$ 1) has no x term again $If(x) = (x + a)(x^2 + bx^2 + cx + d)$ them $d=r$ so $a = d = \pm 1$, $(\bigcirc \{x\})$?
 $\left(\bigcirc \{x\}\right)$?
 $+1$) has no x
 $\left(\frac{1}{2} - a\pi - 1\right)$ has no
 $\left(\frac{1}{2} - a\pi - 1\right)$ has no
 $+(-1) = 2$?

in $\mathbb{Q}[x]$. $standardian$.
 $9 - 1$ are not rest. where a, b, If $f(x) = (x + a)(x + bx + c x + d)$ then $al = 1$ so $a = d = \pm 1$, but $f(1) = 4$ s a , $a + b$
where $a, b, c, d \in \mathbb{Z}$
So f(x) is irreducible in $\mathbb{Z}[x]$; so f(x) is irreducible also in $\mathbb{Q}[x]$. why do we care about automorphisms of fields ? Historically the study of fields originated in questions about finding roots of polynomials. this torically the study of fields originated in quest The roots of ax^2+bx+c $(a\neq 0)$ are $\frac{-b\pm 30-7ac}{2a}$ explicitly using formulas of a, b,c,d using $+,-, x,$ $x + c$ (a=0) are $\frac{2a}{2}$
; of $ax^3 + bx^2 + cx + d$ are given explicitly
 \div and extracting square roots and whe roots similarly for polynomials of degree 4. not and we have some such formula exists the connection between fields and The roots of $ax + bx + c$ $(a \ne 0)$ av

Similarly the roots of $ax^3 + bx^2 + cx + d$

is variog $+ - x$, and extracting ay

Similarly for polynomials of degree 4.

The reason is found in group theory.

The reason is found in group theor Galois theory gives groups. G iven a polynomial $f(x) = x + a_n x^n + \cdots + a_n x + a_n \in \mathbb{C}[x]$ then $f(x) = (x-r)(x-r) \cdots (x-r)$ $then f(x) = (x-r_1)(x-r_2) \cdot (x-r_n)$ The roots lie in $F = Q(r_1$ lhe reason is soly in $\frac{1}{2}(x) = x + a_n x^{n+1} + \cdots + a_n + a_n \in \mathbb{C}[x]$ then $f(x) = (x - r_n)(x - r_n)$.

Shore $r_n = c_n$ The rests lie in $F = \mathbb{Q}(x_1, \cdots, r_n) \subset \mathbb{C}$. Let $G = \text{Aut } F$. G portunites κ ..., κ (in particular G is a subgroup of Su). order¹

