

Fig. at = 
$$\sqrt{2+\sqrt{2}}$$
 The minimal page of a over Q is  $f(x) = x^4 - 4x^2 + 2 \in Q(x^2)$ .

The minimal page of a over Q is  $f(x) = x^4 - 4x^2 + 2 \in Q(x^2)$ .

The mosts of  $f(x)$  is irreducible in  $Q(x)$  so it really is the min. page of a over Q is  $x^2 - 2 = \sqrt{2}$ .

At  $x^2 - 4x^2 + 4 = 2$ .

At  $x^2 - 4x^2 + 2 = 0$ 

At  $x = \sqrt{2+\sqrt{2}}$ .

At  $x =$ 

d has min poly. x3-2 ∈ Q[x] which is irreducible  $q = 3/2 = 2^{1/3}$ Compare G= (t) E=Q[Q] Q is an In R[x],  $f(x) = x^2 - 2 = (x - \alpha)(x^2 + \alpha x + \alpha^2)$ extension of degree E:Q7 = 3 with basis 1, 0, 0 = 3/4 (0=2) T(a+6/2) = a 6/2 G = Aut E = {1, t}, quadratic extension Degree 2 extension: (ie. F is an intermediate field) the transitivity of degrees tells us [E: Q] = [E:F][F:Q] quittic If [F:Q] = 1 then {1} is a basis for Force Q so F = {al : a ∈ Q} If [E: F] = 1 then (similarly) E= F. More generally if E2F is an extension of prime degree p= [E:F] then the only intermediate extensions are E and F. What are the automorphisms of  $E = Q[\alpha]$ ,  $\alpha = 3/2$ ? If  $\phi \in Aut E$  then  $\phi(\alpha) = \phi(\alpha) = \phi(\alpha) = 2$ 

In C, every poly, 
$$f(x) \in C[X]$$
 of degree  $x$  factors as  $f(x) = a(x-r)(x-r)$ .  $(x-r_x) = a(x-r_x)(x-r_x)$ .  $(x-r_x) = a(x-r_x)(x-r_x)$ . Where  $f(x) = a(x-r_x)(x-r_x)$  is the second  $f(x) = a(x-r_x)(x-r_x)$ . We have  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$  is a solution of  $f(x) = a(x-r_x)(x-r_x)$ . The solution of  $f(x) = a(x-r_x)(x-r_x)$ 

Follow links on course website instructional videos 
$$\rightarrow$$
 complex numbers instructional videos  $\rightarrow$  complex numbers  $\rightarrow$  consider  $f(x) = \frac{1}{x^2 - 6x + 35}$ .

This function has polar at  $x = 3 \pm 4i \in C$ 
with  $|3 \pm 4i| = 5$ 

By the Binomial Theore.

 $(1+i)^{11} = 1 + 11i - 55 - 165i + 30 + 462i - 462 - 330i + 165 + 55i - 11 - i = 22 \pm 22i$ 

Much feature way to evaluate powers  $z'' = (x + iy)^{2} = x^{2} + hx^{2}y^{2} + \cdots + iy^{2}$ 

(Binomial Theorem 14:  $|x + y| = \sqrt{1 + 1^{2}} = \sqrt{2}$ 

The roots of  $z = re^{iy}$   $re^{-ix}$   $re^{-ix}$ 

Cake roots of with 
$$y$$
 in  $C: 1, \omega, \omega^2 = \overline{\omega}$ 

$$\omega = e^{\frac{2\pi i}{3}} = -\frac{1+\overline{13}}{2} = \frac{-1}{2} + \frac{\pi}{12} :$$

$$\omega^2 + \omega + 1 = 0$$

$$\omega = \omega$$

$$\omega = \alpha \text{ foot of } x^2 = (x-1)(x^2 + x + 1) = (x-1)(x-\omega)(x-\omega^2)$$

$$\omega = \omega^2 = (x-1)(x^2 + x + 1) = (x-1)(x-\omega)(x-\omega^2)$$

$$\omega = \omega^2 = (x-1)(x^2 + x + 1) = (x-1)(x-\omega)(x-\omega^2)$$

$$\omega = \omega = \omega$$

$$\omega = \omega$$

 $E = Q[\alpha_1, \alpha_2, \alpha_3] = Q[\alpha, \omega]$ Hasse diagram 15 T= To 3 Q[a] Q[a] Q[a] 5T=702 (oc) Double lines indicate Using right-to-left composition A subgroup  $H \leq G$  is normal if its left and right asets agree ie. gH = Hg for all  $a \in G$ OT= (132)(23) = (13) DT = (123)(23) = (12) T=(23) Eg. in G=S3, H=(0) = <(123) is normal. eg. (12)  $H = (12) \{(), (123), (132)\} = \{(12), (23), (13)\}$ H(12) = {(), (123), (132)} (12) = {(12), (13), (23)} LEY is a subgroup of 6 which is not normal in G.  $(13) \langle \tau \rangle = (13) \{ (1), (23) \} = \{ (13), (132) \}$ <t>(13) = {(), (23)} (13) = {(13), (123)} The extension Q[0] > Q of degree [Q[v]: Q]=3 is not would with O(x) confaining only one of the

Galois theory handout: ignore "separable" for now Example of an extension EDQ of degree 3 with 6: Aut E of order 3?  $f(x) = q^2 + x^2 - 2x - 1 \in \mathbb{Q}[x]$  is irreducible  $f(x) = (x-\alpha)(x-\beta)(x-\gamma)$  where  $\alpha + \alpha^2 - 2\alpha - 1 = 0$  $y^3 = 1.4.2\alpha - y^2$ a = a + 22 = a3 = d+2a2 - (1+2a-a2) = -1-a+30 has exactly d = 3+5x-4a2 x = -4-5x+9a2 3 symmetries Check that it is also a nost of f(x) f(x2-2) = (x2-2) + (x2-2) - 2(x2-2) -1 = 0 after collecting terms, so x2-2 ∈ {x, p, y} Can  $\kappa^2 = \alpha$ ? No. If  $\kappa$  is a root of  $f(x) = x^3 + x^2 - 2x - 1$  and a root of  $g(x) = x^2 - x - 2$  then  $\alpha$  is a root of gcd (f(x), g(x)) = r(x)f(x) + s(x)g(x) by Euclid's Algerithm.

which is a factor of f(x) of degree less than 3, a contradiction.

WLOG  $\beta = \alpha^2 - 2$ . Now  $\beta^2 - 2$  is also a root of f(x) by the same reasoning, so  $\beta^2 - 2 \in \{\alpha, \beta, T\}$ As before, B-2 + B. If B-2 = or then (x-2)-2= or = or + 10+4-2= or d- 4x-a+2=0 but  $g(x^3+x^2-2x-1)$ ,  $x^4-4x^2-x+2)=1$  Contradiction Beller:  $-1-4+3a^2-4a^2-u+2$ : So  $g^2-2=\gamma$ . Now  $\chi^2-2=\alpha$ . Indeed  $1-2\alpha-u^2=0$ η-2 = (β-2)-2 = ((x-2)-2)-2 = α. The field  $E = \mathbb{Q}[x] = \{a + bx + co^2 : a,b,c \in \mathbb{Q}\}$  of legree  $[E:\mathbb{Q}] = 3$  (a cubic extension) has entomorphism group  $G = Aut E = \langle \sigma \rangle = \{1,\sigma,\sigma^2\}$ , cyclic of order 3. The map x -> x-2 gives a cyclic permitation 5: a -> p -> x.

E=Q[N]

G= $\langle \sigma \rangle$ Exercise: Find three 3x3 matrices once Q

A,B,C which are roots of f(x)Solishying  $B = A^2 - 2I$ C= $B^2 - 2I$ Galois

(not Hw)

A= $C^2 - 2I$ Correspondence

A= $C^2 - 2I$ Correspondence