

Fields

Let F be a set containing distinct elements called 0 and 1 (thus $0 \neq 1$). Suppose addition, subtraction, multiplication and division are defined for all elements of F (except division by 0 is not defined).

Thus a+b, a-b, ab, $\frac{a}{d} \in F$ whenever $a,b,d \in F$ and $d \neq 0$. Define -a=0-a.

If the following properties are satisfied by *all* elements $a, b, c, d \in F$ with $d \neq 0$, then F is a field.

$$a+b=b+a \qquad a+(b+c)=(a+b)+c \qquad ab=ba$$

$$a+0=a \qquad a(bc)=(ab)c \qquad 1a=a$$

$$a+(-a)=0 \qquad a(b+c)=ab+ac \qquad \frac{a}{d}d=a$$

ab, c, d e Q } is not a field. Q2x2 = {2x2 motorices over Q} = { [a b] 0 = [00], 1 = [01] identify A+ 0 = A, A1 = A = IA [00] has no inverse. A[00]= I has no solution for A Moreover, AB = BA in general. Que is a (non-commutative) ring with identity. It has a subring D = 8 [0 d]: a $d \in Q$ is a commutative subring with identity.

But D is not a field since it has non-invertible elements. D has zero divisors: [10][0]] = [00]. A field can never have zero divisors.

(If I is a zero divisor then cd = 0 where c,d +0 so (+)d = c +0, contradiction)

For a commutative ring R with identity 0.1 = 1 = 1

being able to divide is strongen than having no zero divisors.

An example of a commutative ring with identity having no zero divisors but not a field (division fails in general) is IL [d] = at[da] Eq. F = { [a b]: ab \(\mathbb{R} \) \(\mathbb{R} \) \(\mathbb{R}^{2\tilde{2}} \) is a subring, containing I = [b i]. = latter atter If $\begin{bmatrix} a & b \\ b & a \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ then $\begin{bmatrix} a & b \\ 2b & a \end{bmatrix} = \frac{1}{a^2 - 2b^2} \begin{bmatrix} a & b \\ -2b & a \end{bmatrix}$ (Note: $a^2 - 2b^2 \neq 0$ since $\sqrt{2} \notin Q$)
Why is F a commitative subring? Elements of F have the form [a b] = aI+bS where I=[oi], S=[o] so F= {aI+bS: a,beQ} is the span of {I,S} in Q2x2 (Fis a 2-dimensional subspace of Q2x2 a 4-dimensional vector space).

$$(aI+bS)(cI+dS) = acI + (ad+bc)S + bdS^2 = (cI+dS)(dI+bS)$$
, $S^2 = [2 \cdot 07[2 \cdot 0] = 2I$
= $(ac+2bd)I + (ad+bc)S$
Compare: $K = O[IZ] = \{a+bIZ : ab \in O(3), is a field.$

Similarly $\{[a,b]: ab \in \mathbb{R}^3\} \subset \mathbb{R}^{2KL}$ is a subring isomorphic to \mathbb{C} .

An isomorphism $\mathbb{C} \to \{[a,b]: ab \in \mathbb{R}^3\}$ is $a+b: b \to [a,b]$ (a) $(a,b \in \mathbb{R})$.

Compare:
$$K = \mathbb{Q}[\overline{z}] = \{a+biz : a_ib \in \mathbb{Q}\}$$
.

 $(a+biz) + (c+diz) = (a+c) + (b+d)iz$
 $(a+biz)(c+diz) = ac + (ad+bc)iz + 2bd = (ac+2bd) + (ad+bc)iz$

Note: $F \cong K$ (they are isomorphic)

An explicit isomorphism $\phi: K \rightarrow F$ is given by $\phi(a+biz) = [aba] = aI+bS$

explicit isomorphism
$$\phi: K \rightarrow F$$
 is given ϕ is bijective $\phi(x+y) = \phi(x) + \phi(y)$

explicit isomorphism
$$\phi: k \rightarrow f$$
 ϕ is bijective

 $\phi(x+y) = \phi(x) + \phi(y)$
 $\phi(xy) = \phi(x) \phi(y)$

$$Q[\overline{P}] = \begin{cases} a+b\sqrt{2} : ab \in Q \end{cases}$$

$$R = 5+3\sqrt{2}, \quad \beta = 7-\sqrt{2}$$

$$A+\beta = |2+2\sqrt{2}|$$

$$A = -2+4\sqrt{2}$$

$$A\beta = (5+3\sqrt{2})(7-\sqrt{2}) = 35-5\sqrt{2}+2\sqrt{2}-6 = 29+16\sqrt{2}$$

$$A\beta = (5+3\sqrt{2})(7-\sqrt{2}) = 35-5\sqrt{2}+2\sqrt{2}-6 = 29+16\sqrt{2}$$

$$A\beta = \frac{5+3\sqrt{2}}{7-\sqrt{2}} = \frac{5+3\sqrt{2}}{7-\sqrt{2}} = \frac{7+\sqrt{2}}{7+\sqrt{2}} = \frac{35+5\sqrt{2}+2\sqrt{2}+6}{47} = \frac{41+26\sqrt{2}}{47} = \frac{41}{47} + \frac{26}{47}\sqrt{2}$$
Alternatively, $\frac{A}{\beta} = \alpha\beta$
in matrix representation: $\begin{bmatrix} 5 & 3 \\ 6 & 9 \end{bmatrix} \cdot \begin{bmatrix} 7 & 1 \\ 47 \end{bmatrix} = \frac{1}{47}\begin{bmatrix} 9^{1} & 26 \\ 52 & 41 \end{bmatrix}$

$$\beta \mapsto \begin{bmatrix} 2 & 7 \\ -2 & 7 \end{bmatrix}$$
Similar: $Q[9] = \{a+b\theta : a_1b \in Q\}$ is not a field, not even a ring, since it's not closed under $Q[9] = \{a+b\theta : a_1b \in Q\}$ is not a field, of even a ring, since it's not closed under $Q[9] = \{a+b\theta : a_1b \in Q\}$ is not a field. $\theta = 2$

$$Q[9] = \{a+b\theta : a_1b \in Q\}$$
 is not a field. $\theta = 2$

$$Q[9] = \{a+b\theta : a_1b \in Q\}$$
 is not a field. $\theta = 2$

$$Q[9] = \{a+b\theta : a_1b \in Q\} : a_1b, c \in Q\}$$
 is a field. $\theta = 2$

$$Q[9] = \{a+b\theta : a_1b \in Q\} : a_1b, c \in Q\}$$
 is a field. $\theta = 2$

$$Q[9] = \{a+b\theta : a_1b \in Q\} : a_1b, c \in Q\}$$
 is a field. $\theta = 2$

$$Q[9] = \{a+b\theta : a_1b \in Q\} : a_1b, c \in Q\} : a_1b, c \in Q\}$$
 is a field. $\theta = 2$

$$Q[9] = \{a+b\theta : a_1b \in Q\} : a_1b, c \in Q\} : a_1b, c \in Q\}$$
 is a field. $\theta = 2$

$$Q[9] = \{a+b\theta : a_1b \in Q\} : a_1b, c \in Q\} : a_1b, c \in Q\} : a_1b, c \in Q\}$$

$$Q[9] = \{a+b\theta : a_1b \in Q\} : a_1b, c \in Q\} : a_1b, c \in Q\} : a_1b, c \in Q\}$$

$$Q[9] = \{a+b\theta : a_1b \in Q\} : a_1b, c \in Q\}$$

$$Q[9] = \{a+b\theta : a_1b \in Q\} : a_1b, c \in Q\}$$

$$Q[9] = \{a+b\theta : a_1b \in Q\} : a_1b, c \in Q\}$$

$$\frac{\alpha}{\beta} = \frac{5+30}{7-0} = \frac{1}{100} + \frac{100}{100} + \frac{100}{100} + \frac{251}{341} + \frac{352}{341} + \frac{35}{341} + \frac$$

Alternatively, use 3x3 matrices to represent elements of Q[8] Take $T = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ to represent θ . $T^3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = 21$ $E = \left\{ aI + bT + cT^2 : a, b, c \in \mathbb{Q} \right\} = \left\{ \begin{bmatrix} a & 2c & 2d \\ b & a & u \\ c & b & a \end{bmatrix} : a, b, c \in \mathbb{Q} \right\} \subset \mathbb{Q}^{3x3}$ moncomitative ring with identity having zero devisors This subring is Q[0] & E via the isomorphism 4+60+c02 -> aI+bT+cT2 Are those any fields between @ and Q[FE], or between @ and Q[O]?

Are there any fields between R and C?

Suppose R C F C C is a tower of fields (F is a subfield of C and R is a subfield of f)

Subfield of f)

C ** C 'C' always means strict containment in subfield of f)

E ** C Since FOR, there exists we F, w& R. Then & I are linearly independent over R

ie $\alpha \neq a.1$ for any $a \in \mathbb{R}$, therever C is 2-dimensional over R with basis 1, i (every complex number is uniquely expressible as Z = a.1 + b.i with $a,b \in \mathbb{R}$). So $1, \alpha$ has is for F. So F = C.

Consider the ring C[x] = Epolynomials in x with complex coefficients } This is a ring but not quite a field eg. 5+7x+ix= # C[x] C(x) = field of fractions of C(x)= field of notional functions in x with complex coefficients Just like constructing Q from Z. Another example of this: We'll construct a complably infinite substill of R containing of this contains the substing $Q[\pi] = \{a_0 + a_1\pi + a_2\pi^2 + ... + a_n\pi^n : n \geqslant 0, a_i \in \mathbb{Q}^{\frac{n}{2}}\}$ $\pi \in Q[\pi]$ has no (multiplicative) inverse in $Q[\pi]$ since if $1 = \pi \left(q_0 + q_1 \pi + q_2 \pi^2 + \dots + q_n \pi^n \right) \quad q \in \mathbb{Q}, \quad n \ge 0$ a contradiction since π is transpendental (π would be a not of a nonzero polynomial $q_n \pi^n + q_n \pi^$ Q(m) = { a : a, b ∈ Q[m], b + 0 } is the field of quotients of the ring Q[m] $Q(\sqrt{2}) = \frac{94}{6}$: $a,b \in Q(\sqrt{2})$, $b \neq 0\frac{3}{5} = Q(\sqrt{2})$ is already a field. To is algebraic: it is a root of a Every $d \in C$ is either algebraic or transcendental, never both nonzero poly. $x^2 = Q[x]$

Is there any field extension CCF with F 2-dimensional extensions. No, but there do exist fields FDC which are infiltite dimensional extensions.

countable mountable montable Q = { a, a, a, a, a, 9+9,x 9+4,x 9+4,x ... A = {algebraic numbers} Q C A C C 93+97 93+97 93+97 QCAOR CR contable uncontable. $Q(\pi)$ is a countably intinite ving. So $Q(\pi)$ is a countably intinite field. Elements of Q(T) CR look like $\frac{63.8 \pi^{2} - 17\pi + \frac{53}{7}}{42\pi^{2} + 119\pi + \frac{103}{648}}$ Congare: $Q(e) \subset R$, another countable subfield of R.

Congare: $Q(e) \subset R$, another countable subfield of R.

Actually $Q(e) \cong Q(\pi)$. An isomorphism is $f(e) \longmapsto f(\pi)$ where $f(\pi) \in Q(\pi)$.

Actually $Q(e) \cong Q(\pi)$ (x being an indeterminate i.e. an jake-tract symbol generic Q(x) -> Q(r) evaluation dolar if quite work eg. the irage of $\frac{x^3+7x^2-3}{x^2} \in \mathbb{Q}(x)$ is undefined; you can't evaluate this at $\sqrt{2}$. Q(x) -> Q(e) $\mathbb{Q}(x) \longrightarrow \mathbb{Q}(\sqrt{2}x)$ But Q[x] -> Q[m] the evaluation Q[x] -> Q[e] T,e,tz, Q[x] -> O[\fi]

If $\phi: R \rightarrow S$ where RS are rings, we say ϕ is a ring homomorphism if $\phi(a+b) = \phi(a) + \phi(b)$? for all $a,b \in R$ where RS may not have identity. We don't necessarily require $\phi(1) = 1$; and in general the rings RS may not homomorphisms. If RS are rings with identity $(1_R \in R, 1_S \in S)$ we might consider only homomorphisms of rings with identity is $\phi(1_R) = \phi(1_S)$. * Suppose F, K are fields. If $\phi: F \to K$ is a ring homomorphism then either (i) $\phi(F) = \{0\}$ i.e. $\phi(a) = 0$ for all $a \in F$, or (total) Any homomorphism is either trivial or it has the for $Q(x) \longrightarrow R$ is either trivial or it has the for $Q(x) \longrightarrow R$ is either trivial or it has the form $Q(x) \longrightarrow Q(a)$, $f(x) \mapsto f(a)$ at some transcendental unmber a & R. we have homomorphisms $Q[x] \longrightarrow C^{n\times n}$ (nx n complex natrices) where we evaluate at a matrix $A \in C^{n\times n}$, i.e. $f(x) \mapsto f(A)$ 我~+ Bx-4 トラ 報A+ BA- 91 (x) In a field F, every ideal is either 303 or An automorphism of a field F is an isomorphism $\phi: F \to F$. Eg hijective with (i) Automorphisms of Q[se]? We want $\phi: Q[se] \to Q[se]$ hijective with $\phi(a+b) = \phi(a) + \phi(b)$, $\phi(ab) = \phi(a) \phi(b)$. · The identity $\phi(a) = a$ · $\phi(x) = x + t$, $t \in \mathbb{Q}[\sqrt{2}]$. There are not automorphism.

If $\phi: F \rightarrow F$ is any automorphism of a field F then $\phi(0) = \phi(0+0) = \phi(0) + \phi(0) \Rightarrow \phi(0) = 0$ $\phi(1) = \phi(1+1) = \phi(1) + \phi(1) \text{ where } \phi(1) \neq 0 \text{ since } \phi \text{ is one-to-one} \text{ Multiply both Sides}$ $\phi(1) = \phi(1+1) = \phi(1) + \phi(1) = 1.$ $\phi(0) = \phi(0+0) = \phi(0) + \phi(0) = 0$ $\phi(1) = \phi(1+1) = \phi(1) + \phi(1) = 1.$