Fields

Book II

Eq. $\alpha = \sqrt{2+\sqrt{2}}$ The minimal poly of α over Q is $f(x) = x^4 - 4x^2 + 2 \in Q[x]$ $x^2 = 2+\sqrt{2}$ (Exercise: $f(x)$ is irreducible in $Q[\pi]$ so it really is the m	(). plu of a over (2)
The mate of $f(x)$ asp $\alpha = \sqrt{2+\sqrt{2}}$	And port of the second the
A A 2 + 9 - 2	
$\alpha = -1\alpha + 2 = 0$	
$f(x) = x^{2} - 4x^{2} + 2 = (x - \alpha)(x + \alpha)(x - \beta)(x + \beta)$	
In this case E= Q[x]= {a+ba + ca2+da3: a,b,c,d ∈ Q} contains all the roots	of f(x)
so it is a normal extension of \mathbb{Q} . $\mathbb{P} = (*) + (*)\alpha + (*)\alpha^2 + (*)\alpha^3 = \alpha^3 - 3\alpha$ $\kappa \beta = \sqrt{2 + \sqrt{2}} - \sqrt{2} = \sqrt{1 - 2} = \sqrt{2} = \alpha^2 - 2$	
$\alpha \beta = \sqrt{2 + \sqrt{2}} \sqrt{2 - \sqrt{2}} = \sqrt{4 - 2} = \sqrt{2} = \alpha^{-2}$ $\Rightarrow R = \alpha^{-2} \in \mathbb{Q}[\alpha] = \mathbb{Q}[\alpha]$ $\alpha^{4} - 4\alpha^{2} + 2 = 0$	$\alpha^{4} = 4\kappa^{2} - 2$
	al= 40t-20t
	$=4(4d^{2}-2)-2d^{2}$
Look for an automorphism $\sigma: E \rightarrow E$ ($E=Q[\alpha]$) satisfying $\sigma(\alpha) = \beta$.	$= H_{\alpha}^2 - 8$
$\sigma(\beta) = \sigma(\alpha^{2} - 3\alpha) = \sigma(\alpha)^{3} - 3\sigma(\alpha) = \beta^{3} - 3\beta^{3} = (\alpha^{2} - 3\alpha)^{3} - 3(\alpha^{3} - 3\alpha) = (\alpha^{3} - 3\alpha)((\alpha^{2} - 3\alpha))$	
$= (a^{3} - 3a)(a^{6} - 6a^{4} + 9a^{2} - 3) = (a^{3} - 3a)(4a^{2} - 8a - 6(4a^{2} - 2) + 9a^{2} - 3) = (a^{3} - 3a)(a^{2} + 1) = a(a^{2} - 3a)(a^{2} - 3a)(a^{2}$	3)(-a ² +1) a a a a a a
$= \alpha(-\alpha^{4}+4\alpha^{2}-3) = \alpha(-(4\alpha^{2}-2)+4\alpha^{2}-3) = -\alpha$	s o(a) = }
$\delta: \alpha \longmapsto \beta = \alpha^{2} \exists \alpha \longmapsto \gamma - \alpha \longmapsto \gamma - \beta \longmapsto \gamma \alpha$	$(x)\sigma(\beta) / \sigma(-\alpha) = -\sigma(\alpha) = -\beta$
Aut $E = \langle \sigma \rangle$ of order 4 , cyclic. $G = A \pm E = \langle \sigma \rangle = \{1, \sigma, \sigma, \sigma, \sigma\} = B$	(-v) `
Q[x] Correspondence 2 2 = -	$\alpha\beta (\beta) = -\alpha$
$\mathbb{O}[\mathbf{E}] \xrightarrow{0 = (1, 0)} \sigma(\mathbf{E}) = \sigma(\mathbf{a}^2 - 2)$	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$
$ \begin{split} \vec{\sigma} : & \vec{\kappa} \rightarrow \beta = \sqrt{-3} d \vec{\kappa} \rightarrow -\alpha \vec{\kappa} \rightarrow -\beta \vec{\kappa} \vec{\kappa} \\ Aut E = \langle \sigma \rangle \sigma f oxder 4 ; cyclic . \\ Gelosis \\ & Q[\kappa] \vec{\kappa} \\ & z \\ & z \\ & Q[\kappa] correspondence 7 2 \\ & z \\ &$	$2 = \beta^2 - 2 = -\sqrt{2}$
\mathbb{Q} and \mathbb{Q}	

G=Aut E = §1, t}, Degree 2 extension 3		$a = 3\sqrt{2} = 2^{1/3}$ $E = \mathbb{Q}[\alpha] \supseteq \mathbb{Q} \text{ is an}$ $extension of degree$ $[E: \mathbb{Q}] = 3$ with basis $1, \alpha, \alpha^2 = 3\sqrt{4}$ sion $IP = 2F \supseteq \mathbb{Q}$ the transitivity of de	$\alpha \text{ has min. poly. } x^{3}-2 \in \mathbb{Q}[x] \text{ which is inteducible}$ $\text{In } \mathbb{R}[x], f(x) = x^{3}-2 = (x-\alpha)(x^{2}+\alpha x + \alpha^{2})$ Subfields $(\alpha^{3}=2) \qquad \qquad$	
What are the aut	ancomplishes of E:	IF [E:F] = More generally Then the only	n {1} is a basis for Forek Q so $F = \{al : a \in Q\}$ 1 then (similarly) $E = F$. if $E \ge F$ is an extension of prime degree $p = [E:F]$ intermediate extensions are E and F . be Aut E then $(ba)^2 = \phi(a^2) = \phi(2) = 2$	

In C, every poly. $f(x) \in \mathbb{C}[x]$ of degree n factors as $f(x) = a(x-r_1)(x-r_2)\cdots(x-r_n)$ $(a, f_1, f_2, \cdots, f_n \in \mathbb{C})$ where $\xi = e^{2\pi i/n}$ eg $x^{n}-1 = (x-1)(x-\xi)(x-\xi^{2})(x-\xi^{3})\cdots(x-\xi^{n-1})$ de Moivre's formula: $e^{i\theta} = \cos\theta + i\sin\theta$ $\int \int Complex numbers C = \{a+bi: a, b\in R\}, i= Ji$ Every ZEC has unique exposentation as Z= a+bi (a, ber) in rectangelor coordinates $z = a + bi = re^{i\theta}$ a = Rez = Ral part of Z b = Im z = imaginary part of Z. r= |2| = Ja2+62 The roots of x^n-1 are the nth roots of unity: 1, ξ , ξ^2 , ξ^{n-1} forming the vertices of a regular n-gon inscribed in the unit circle |z| = 1. Eq. n= 4 The bourth roots of unity are ±1, ±i the bourth roots of unity are ±1, ±i 1, e¹=i, e²=i, -i Euler's Formula eⁱ=-i e²=-i 5= e#i Eq. n=3: The three cube roots of unity in C are 1, w, w² where $\omega = e^{\frac{2\pi i}{1}} = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2}$ Jen-1 $\chi^{2}-1 = (\chi-1)(\chi^{2}+\chi+1) = (\chi-1)(\chi-\omega)(\chi-\omega^{2})$ $\omega = \frac{-1\pm 43}{2}$ $w = \overline{w}$

follow links on course website instructional videos -> com Eq. consider $f(x) = \frac{1}{x^2 - 6x + 25}$ This function has poles at x= 3±4i € C with $|3\pm 4i|=5$ By the Binomial Theorem (1+1) (Binomial Thesen) to evaluate powers (x+ iy) 5 Much faster $|1+i| = \sqrt{1^2 + 1^2} = \sqrt{2}$ $(1+i)^{"} = (\sqrt{2}e^{\frac{1}{4}})^{"}$ 2 3212 nthe roots of Z

Cube roots of mity	$in \mathbb{C}$: $1, \omega, \omega^2 = \overline{\omega}$			•
w	$\omega = e^{2\pi i \frac{1}{3}} = \frac{-1+\sqrt{3}}{2} = \frac{-1}{2} + \frac{\sqrt{3}}{2}$		Q & Galois 2	
91	$\omega^2 + \omega + i = 0$		G = Aut Q[w] = <t> = {U,</t>	τÌ
$\bar{\omega} = \omega^2 T$	ω is a root of $x^{-1} = (x-1)$	$(x^{2} + \pi + 1) = (\pi - 1)(\pi - \omega)(\pi - \omega^{2})$	where $T(z) = \overline{z}$	(**)
Now let $\alpha = 3\sqrt{2}$, F	F = Q[x]	$\tau(\omega) = \omega^2$		•
$F=Q(\alpha)= \{a+1\}$	over Q is $x^3-z \in Q[x]$ by $z^3 : a, b, c \in Q^3$. Aut			
· · 3 · · · · · · · ·		$\sim 1 \times 12 = 2$		
Scale by facto	r of α	The other roots of	3-2 are not in F= (R(K) ie. Q is not normal.	•
a a a a a Tara a a	$(x_2)(x-a_3)$ where $\alpha_1 = \alpha_1$	$\alpha_1 = \alpha_{47} \alpha_2 = \alpha_{45}$		•
a da 🔪 e de la caractería de la c		$x^{2} = (x - \alpha_{1})(x - \alpha_{2})(x - \alpha_{2})($	$-a_2)(\chi - \alpha_3)$	•
	$a^{2} = 2$ $(\alpha w)^{2} = \alpha w^{2} = 2 \cdot 1 = 2$	basis (x - a) (x) $basis (x - a) (x)$ $so [E: f] = 2$ $(x - a) (x)$ $basis (x, a)$	~ <i>w)(x-~w</i>) \$ [f:@]=3	
	$(\alpha W) = \alpha W - 2 \cdot (= 2)$			
0 d=	$(\alpha \omega^2)^3 = \alpha^3 \omega^6 = 2 \cdot 1 = 2$	R[a1, 42, 93] R[u]	$E: Q] = 2.3=6$ $W = \frac{1}{2} 2^{\frac{1}{2}} 2^{\frac{1}{2}} \omega$	•
	There are 21 . (mer that	Q[u,w]		•
qw2	There are 3!= 6 permiter	ingation In Sz	$= \langle 0, T \rangle$, $0 = (123)$, $T = (23)$	
= ~3			$\frac{\alpha_{2}}{\alpha_{1}} = \frac{\alpha_{3}}{\alpha_{2}} = \frac{\alpha_{1}\omega^{2}}{\alpha_{2}} = \omega$	
	≪s ≪3 ∞ ³	$\sigma(\frac{\partial \omega}{\partial x})$	V ₁) α _Σ αω	•
	≪ ແມ ແ ເມ ເມ ພ ²	$\tau(\omega) = \tau\left(\frac{\omega_2}{\omega_1}\right) = \frac{\omega_2}{\omega_1}$	$\Delta_{2} \frac{\alpha \omega^{2}}{\omega} = \omega^{2} = \overline{\omega}$	•
	ω ω ω ω ω ω ω		Constraints and the second se second second sec	

$E = Q[\alpha_1, \alpha_2, \alpha_3] = Q[\alpha_1, \omega_2]$ $2 \qquad 2 \qquad$	Hasse dia gram of substitutes of E	diagram of subgroups of G= Aut E	6= S= (5,2)	OZ = TO OZ = TO Duble times indica
	Galois correspond	lence		2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 3 3 3 3
A subgroup H ≤ G is normal all g ∈ G.	if its left and right	t cosots agree i.e.	gH = Hg Br	
Eq. in G= Sz, H= $\langle 0 \rangle = \langle (12) \rangle$ eq. (12) H = (12) $\{(), (123), \frac{1}{r}\}$	(132) is normal. (132) = $\{(12)$ t_{2}	, (23), (13)}		(12)(123) = (1)(23) = (23)
$H(12) = \{(), (123), (132)\}$ (12)	$= \{(12), (13), (23)\}$	\$	· · · · · · · · · ·	· · · · · · · · · · · · · · ·
$\langle \tau \rangle$ is a subgroup of 6 which $(13) \langle \tau \rangle = (13) \{(), (23)\} =$ $\langle \tau \rangle (13) = \{(), (23)\} (13) =$	$\{(13), (132)\}$		· · · · · · · · · · ·	
The extension Q[a] > D of	legree [Q[v] Q]=3 is not no at a over Q	vnd 13 x ³ -2 0 -	\mathcal{N}
. .	since the nin. ply. with O[x] three roots	ortaining o of x-2.	nly one of -	