## **Fields**

Book II

| Eq. $\alpha = \sqrt{2+\sqrt{2}}$<br>The minimal poly of $\alpha$ over $Q$ is $f(x) = x^4 - 4x^2 + 2 \in Q[x]$<br>$x^2 = 2+\sqrt{2}$ (Exercise: $f(x)$ is irreducible in $Q[\pi]$ so it really is the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ().<br>plu of a over (2)                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| The mate of $f(x)$ asp $\alpha = \sqrt{2+\sqrt{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | And port of the second the                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                               |
| A A 2 + 9 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               |
| $\alpha = -1\alpha + 2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               |
| $f(x) = x^{2} - 4x^{2} + 2 = (x - \alpha)(x + \alpha)(x - \beta)(x + \beta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |
| In this case E= Q[x]= {a+ba + ca2+da3: a,b,c,d ∈ Q} contains all the roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of f(x)                                                                                                       |
| so it is a normal extension of $\mathbb{Q}$ . $\mathbb{P} = (*) + (*)\alpha + (*)\alpha^2 + (*)\alpha^3 = \alpha^3 - 3\alpha$<br>$\kappa \beta = \sqrt{2 + \sqrt{2}} - \sqrt{2} = \sqrt{1 - 2} = \sqrt{2} = \alpha^2 - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               |
| $\alpha \beta = \sqrt{2 + \sqrt{2}} \sqrt{2 - \sqrt{2}} = \sqrt{4 - 2} = \sqrt{2} = \alpha^{-2}$ $\Rightarrow R = \alpha^{-2} \in \mathbb{Q}[\alpha] = \mathbb{Q}[\alpha]$ $\alpha^{4} - 4\alpha^{2} + 2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\alpha^{4} = 4\kappa^{2} - 2$                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | al= 40t-20t                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $=4(4d^{2}-2)-2d^{2}$                                                                                         |
| Look for an automorphism $\sigma: E \rightarrow E$ ( $E=Q[\alpha]$ ) satisfying $\sigma(\alpha) = \beta$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $= H_{\alpha}^2 - 8$                                                                                          |
| $\sigma(\beta) = \sigma(\alpha^{2} - 3\alpha) = \sigma(\alpha)^{3} - 3\sigma(\alpha) = \beta^{3} - 3\beta^{3} = (\alpha^{2} - 3\alpha)^{3} - 3(\alpha^{3} - 3\alpha) = (\alpha^{3} - 3\alpha)((\alpha^{2} - 3\alpha))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |
| $= (a^{3} - 3a)(a^{6} - 6a^{4} + 9a^{2} - 3) = (a^{3} - 3a)(4a^{2} - 8a - 6(4a^{2} - 2) + 9a^{2} - 3) = (a^{3} - 3a)(a^{2} + 1) = a(a^{2} - 3a)(a^{2} - 3a)(a^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                      | 3)(-a <sup>2</sup> +1) a a a a a a                                                                            |
| $= \alpha(-\alpha^{4}+4\alpha^{2}-3) = \alpha(-(4\alpha^{2}-2)+4\alpha^{2}-3) = -\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s<br>o(a) = }                                                                                                 |
| $\delta: \alpha \longmapsto \beta = \alpha^{2} \exists \alpha \longmapsto \gamma - \alpha \longmapsto \gamma - \beta \longmapsto \gamma \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $i(n/a) / t(-\alpha) = - t(\alpha) = -\beta$                                                                  |
| Aut $E = \langle \sigma \rangle$ of order 4 , cyclic. $G = A \pm E = \langle \sigma \rangle = \{1, \sigma, \sigma, \sigma, \sigma\} = B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (-v) `                                                                                                        |
| Q[x] Correspondence 2 2 = -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\alpha\beta  (\beta) = -\alpha$                                                                              |
| $\mathbb{O}[\mathbf{E}] \xrightarrow{0 = (1, 0)} \sigma(\mathbf{E}) = \sigma(\mathbf{a}^2 - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sqrt{2}$ |
| $ \begin{split} \vec{\sigma} : & \vec{\kappa} \rightarrow \beta = \sqrt{-3} d  \vec{\kappa} \rightarrow -\alpha  \vec{\kappa} \rightarrow -\beta  \vec{\kappa}  \vec{\kappa} \\ Aut E = \langle \sigma \rangle  \sigma f  oxder  4  ;  cyclic . \\ Gelosis \\ & Q[\kappa]  \vec{\kappa} \\ & z  \\ & z  \\ & Q[\kappa]  correspondence  7  2  \\ & z  \\ &$ | $2 = \beta^2 - 2 = -\sqrt{2}$                                                                                 |
| $\mathbb{Q}$ and $\mathbb{Q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |

| G=Aut E = §1, t},<br>Degree 2 extension<br>3 | $a = 3\sqrt{2} = 2^{1/3}$ $E = \mathbb{Q}[\alpha] \supseteq \mathbb{Q} \text{ is an}$ $extension of degree$ $[E: \mathbb{Q}] = 3$ with basis $1, \alpha, \alpha^2 = 3\sqrt{4}$ sion $IP = 2F \supseteq \mathbb{Q}$ the transitivity of de | $\alpha \text{ has min. poly. } x^{3}-2 \in \mathbb{Q}[x] \text{ which is inteducible}$ $\text{In } \mathbb{R}[x],  f(x) = x^{3}-2 = (x-\alpha)(x^{2}+\alpha x + \alpha^{2})$ $\text{Subfields}$ $(\alpha^{3}=2) \qquad \qquad$ |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| What are the aut                             | IF [E:F] =<br>More generally<br>Then the only                                                                                                                                                                                             | n {1} is a basis for Forek Q so $F = \{al : a \in Q\}$<br>1 then (similarly) $E = F$ .<br>if $E \ge F$ is an extension of prime degree $p = [E:F]$<br>intermediate extensions are $E$ and $F$ .<br>be Aut $E$ then $(ba)^2 = \phi(a^2) = \phi(2) = 2$                                                                                                  |  |
|                                              | <br>                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                        |  |
|                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                        |  |
|                                              | <br>                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                        |  |

In C, every poly.  $f(x) \in \mathbb{C}[x]$  of degree n factors as  $f(x) = a(x-r_1)(x-r_2)\cdots(x-r_n)$  $(a, f_1, f_2, \cdots, f_n \in \mathbb{C})$ where  $\xi = e^{2\pi i/n}$ eg  $x^{n}-1 = (x-1)(x-\xi)(x-\xi^{2})(x-\xi^{3})\cdots(x-\xi^{n-1})$ de Moivre's formula:  $e^{i\theta} = \cos\theta + i\sin\theta$   $\int \int Complex numbers C = \{a+bi: a, b\in R\}, i= Ji$ Every ZEC has unique exposentation as Z= a+bi (a, ber) in rectangelor coordinates  $z = a + bi = re^{i\theta}$ a = Rez = Ral part of Z b = Im z = imaginary part of Z. r= |2| = Ja2+62 The roots of  $x^n-1$  are the nth roots of unity: 1,  $\xi$ ,  $\xi^2$ ,  $\xi^{n-1}$  forming the vertices of a regular n-gon inscribed in the unit circle |z| = 1. Eq. n= 4 The bourth roots of unity are ±1, ±i the bourth roots of unity are ±1, ±i 1, e<sup>1</sup>=i, e<sup>2</sup>=i, -i Euler's Formula e<sup>i</sup>=-i e<sup>2</sup>=-i 5= e#i Eq. n=3: The three cube roots of unity in C are 1, w, w<sup>2</sup> where  $\omega = e^{\frac{2\pi i}{1}} = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2}$ Jen-1  $\chi^{2}-1 = (\chi-1)(\chi^{2}+\chi+1) = (\chi-1)(\chi-\omega)(\chi-\omega^{2})$  $\omega = \frac{-1\pm 43}{2}$  $w = \overline{w}$ 

follow links on course website instructional videos -> com Eq. consider  $f(x) = \frac{1}{x^2 - 6x + 25}$ This function has poles at x= 3±4i € C with  $|3\pm 4i|=5$ By the Binomial Theorem (1+1) ( Binomial Thesen) to evaluate powers (x+ iy) 5 Much faster  $|1+i| = \sqrt{1^2 + 1^2} = \sqrt{2}$  $(1+i)^{"} = (\sqrt{2}e^{\frac{1}{4}})^{"}$ 2 3212 nthe roots of Z

| Cube roots of mity in C: 1, w, w= to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q[w] G= <t></t>                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\omega = e^{2\frac{\pi}{3}} = -\frac{1+\sqrt{3}}{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/                                                                                                                                      |
| $\frac{9}{1}  \omega^2 + \omega + i = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Correspondence                                                                                                                                                              |
| $\bar{\omega} = \omega^{3}$ $\omega$ is a root of $x_{-1}^{2} = (x_{-1})(x^{2} + x + 1) = (x_{-1})(x_{-\omega})(x_{-\omega}^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $G = Aut \mathbb{Q}[w] = \langle \tau \rangle = \{1, \tau\}$<br>where $\tau(\varepsilon) = \overline{\varepsilon}$                                                          |
| Now let $x = \sqrt{2}$ , $F = \mathbb{Q}[u]$<br>$T_{(w)} = w^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                             |
| we want pog of a such we is n=2 - aring,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |
| $F=Q(\alpha)=\{a+b\alpha+c\alpha^2:a,b,c\in Q^3\}$ , Aut $F=\{L\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                             |
| $x^{3}-2 = (x-\alpha)(x^{2}+\alpha x + \alpha^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |
| Scale by factor of of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $x^{3}-2$ are not in $F= (P[x])$ i.e.<br>= $D[Q]$ is not normal.                                                                                                            |
| $\chi^{3}_{-2} = (\chi - \chi_{1})(\chi - \chi_{2})(\chi - \chi_{3})$ where $\chi_{1} = \chi$ , $\chi'_{2} = \chi_{40}$ , $\chi_{3} = \chi_{40}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             |
| $x^{3} = (x - \alpha_{1})^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(x-\alpha_2)(x-\alpha_3)$                                                                                                                                                  |
| $\alpha^{2} = 2 \qquad = (x - \alpha)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(\pi - \alpha \omega)(x - \alpha \omega^2)$                                                                                                                                |
| $(\alpha w)^3 = \alpha w^3 = 2 \cdot 1 = 2$ $E \supset F \supset Q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |
| $(\alpha \omega^2)^3 = \alpha^3 \omega^6 = 2 \cdot 1 = 2$ $Q[\alpha_1, \alpha_2, \alpha_3] Q[\alpha]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\omega = \frac{1}{2} \alpha_1^2 \alpha_2^2 \qquad $ |
| Q[a,w]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $=\frac{1}{2}\cdot\frac{2^{4_{3}}}{2}\cdot\frac{2^{4_{3}}}{2}\omega$                                                                                                        |
| There are 3!= 6 permitations of a, az, as.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S= (FT) = ( ( )                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $S_3 = \langle 0, T \rangle$ , $\sigma = (123)$ , $T = (23)$ .                                                                                                              |
| $\alpha_1  \alpha_2  \alpha_3  \sigma_3  \sigma_4  \sigma_5  \sigma(\omega) = \sigma(\omega_1) = \sigma(\omega$ | $\frac{\mathcal{O}(\alpha_{z})}{\mathcal{O}(\nu_{1})} = \frac{\alpha_{s}}{\alpha_{z}} = \frac{\alpha_{w}}{\alpha_{w}} = \omega$                                             |
| $\mathfrak{C}(\underline{\mathfrak{Q}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |
| $\omega^{2} \omega^{2} \omega^{2} = \tau \left(\frac{\omega_{2}}{\omega_{1}}\right) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{\alpha_3}{\alpha_1} = \frac{\alpha\omega^2}{\alpha} = \omega^2 = \overline{\omega}$                                                                                  |

 $b_T^2 = Tb$  $b_T = Tb^2$ G= S= (5, 2) <5> (0 t) (ot) <del>ظ</del>> 3 Using right-to-left composition ςι,