Fields

Bookt

Fields

Let *F* be a set containing distinct elements called 0 and 1 (thus $0 \neq 1$). Suppose addition, subtraction, multiplication and division are defined for all elements of *F* (except division by 0 is not defined). Thus a + b, a - b, ab, $\frac{a}{d} \in F$ whenever $a, b, d \in F$ and $d \neq 0$. Define -a = 0 - a.

If the following properties are satisfied by *all* elements $a, b, c, d \in F$ with $d \neq 0$, then F is a field.

a + b = b + a	a + (b + c) = (a + b) + c	ab = ba
a + 0 = a	a(bc) = (ab)c	1a = a
a + (-a) = 0 $a + (-b) = a - b$	a(b+c) = ab + ac	$\frac{a}{d}d = a$

$Q^{2\times 2} = \{2\times 2 \mod \alpha\} = \{[a, b]: a, b, c, d \in \Omega\}$ is not a field.
$0 = \begin{bmatrix} 0 & 0 \end{bmatrix}, 1 = \begin{bmatrix} 0 & 1 \end{bmatrix}$ identify
A = A + D = A, AI = A = IA
[00] has no inverse. A [00] = I has no solution for A.
Moreorer, AB = BA in general.
O ²²² is a (non-commutative) ring with identity.
It has a subring $D = S[o^2d]$: a, $d \in QS$ is a commutative subring with identity.
D' 1 13 not a treva since it has non-more a field can reser have zero divisors
(If I is a zero divisor then cd=0 where cd =0 so (E) = c =0 contradiction)
$- \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
for a committative ring K with identity 0.1 = 7 a
An are all of a commutative ring with identity having no zero divisors but not a field
(division fails in general) is Z
$\frac{1}{2} = \frac{2^{2}}{2} = \frac{1}{2} = $
Eq. F= { [26 a] : abe QSC Q is a subring touraining I to is - father atte
If $\begin{vmatrix}a & b \end{vmatrix} \neq \begin{bmatrix}a & b \\ 0 & 0 \end{vmatrix}$ then $\begin{bmatrix}a & b \\ 2b & a \end{bmatrix} = \frac{1}{2^2 + 2^2} \begin{bmatrix}a & b \\ 2b & a \end{bmatrix}$ (Note: $a^2 + 2b^2 \neq 0$ since $\sqrt{2} \neq 0$)
Where is F a commitative subring ? Elements of F have the form
of a by = aI+bS where I=[0], S=[2] so F= {aI+bS : a,be Q} is the span of {I.S}
in O ²²² (Fis a 2-dimensional subspace of Q ²²² a 4-dimensional vector space).

$(aI+bS)(cI+dS) = acI + (ad+bc)S + bdS^{2} = (cI+dS)(aI+bS)$ = (ac+ 2bd)I + (ad+bc)S	$S^{2} = \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} = 2\mathbf{I}$	
Compare: $K = \mathbb{Q}[I\overline{z}] = \{a+b\overline{z} : a, b \in \mathbb{Q}\}$ is a field. $(a+b\overline{z}) + (c+d\overline{z}) = (a+c) + (b+d)\overline{z}$ $(a+b\overline{z})(c+d\overline{z}) = ac + (ad+bc)\overline{z} + 2bd = (ac+2bd) + (ad+bc)\overline{z}$ $Note: F \cong K$ (they are isomorphic) An explicit isomorphism $\phi: K \rightarrow F$ is given by $\phi(a+b\overline{z}) = [aba \phi is bijective\phi(x+q) = \phi(x) + \phi(q)\phi(xy) = \phi(x) \phi(y)$)= al+6S.	
Similarly $\left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a, b \in \mathbb{R} \right\} \subset \mathbb{R}^{2^{n}}$ is a subring isomorphism Au isomorphism $\mathbb{C} \longrightarrow \left\{ \begin{bmatrix} a & b \\ -7 & 0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$ is $a+b$:	2ic to C. $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ $(a_1b \in \mathbb{R}).$	

$Q[JZ] = \{a+bJZ : a \in Q\}$	
$k = 5+3\sqrt{2}, \beta = 7-\sqrt{2}$	
$\lambda = 1 + 25$	•
$\alpha - \beta = -2 + 4\sqrt{2}$	
$(2^{2})^{2} = $	
$\alpha_{\beta} = (3+3)2(1-32) = 35-332+(1)2-0 = -1$	
$\frac{1}{R} = \frac{5+3/2}{7-5} = \frac{5+5/2}{7+5} = \frac{1}{7+5} = \frac{1}{47} = \frac{1}{47} = \frac{1}{47} + \frac{1}{47} +$	
	•
Alternatively, $\frac{\alpha}{2} = \alpha \beta^{2}$	
$\begin{bmatrix} 5 & 3 \\ -1 \end{bmatrix} \begin{bmatrix} 7 & 1 \\ -1 \end{bmatrix} = \frac{1}{42} \begin{bmatrix} 41 & 26 \\ -1 \end{bmatrix}$	•
in matrix epiesumation. [6 5] 49 2 7] 71 [52 7] 1	
$ = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{-1} $	
$\beta' \mapsto \beta' \geq \gamma$	•
Similar: $Q[3 2] = Q[\theta]$, $V = \sqrt{2}$.	
Satho : abe QZ is not a field, not even a ring since it's not closed under	
$Q[P] = \{a + bP + cP^2 : a, b, c \in Q\}$ is a field. $D^2 = 2$ multiplication.	
$\theta^{\dagger} = 2\theta$	•
$k = 5 + 30$ $q + \beta = 12 + 20$ $\beta^{5} = 20^{-1}$	
$\beta = 7 - \theta \qquad \qquad$	
$\alpha \beta = (5+30)(7-0) = 35-50+200-50$	
$\sim 2\pi i f(l) - 2h$	

$\frac{\alpha}{2} =$	5+30 = R +	$b\theta + c\theta^2 =$	$\frac{25(}{341} + \frac{182}{341}\theta + \frac{36}{341}$	$\theta^2 = \frac{1}{341} (251 + 1820)$	$(26\theta^2)$	Ø ³ = 2
9	+-0 +	Timel coefficien	dz .			9-2 =
⊕ = 342		$a, b, c \in \mathbb{R}$		d is a root of	$x^{3}-2 = (\pi - \theta)(\pi^{2} + 1)$	$\theta_{x+}\theta^{2}$
	5+30 =	$(a+b\theta+c\theta^2)(7-$				
· · · · · · ·		= 7q + (7b-a)8 = (7a-2c) + (7b	+ (7c-6)0-2c -9)8 + (7c-6)8	• • • • • • • • • •	· · · · · · · · · · · ·	QUE PID
tbpet	Cally 7a -a+76 -b+	-2c = 5 = 3 -7c = 0	$\begin{bmatrix} 7 & 0 & -2 & 5 \\ -1 & 7 & 0 & 3 \\ 0 & -1 & 7 & 0 \end{bmatrix}$	$ \begin{bmatrix} 0 & 49 & -2 \\ -1 & 7 & 0 \\ 0 & -1 & 7 & 0 \end{bmatrix} $		0 -3 2 26 7 0
	ZG 44 7 <u>26</u>	341	0 1 -7 0 -3 0 1 -7 0 0 49 -2 20	$\int_{-\infty}^{\infty} \frac{1}{2} \left[\begin{array}{c} 0 & -49 \\ 0 & 1 & -7 \\ 0 & 0 & 34 \\ 0 & 0 & 34 \\ \end{array} \right]$	$\begin{bmatrix} -3\\0\\26\end{bmatrix} \sim \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}$	$ \begin{array}{c c} 49 & -9 \\ -7 & 0 \\ 1 & \frac{26}{391} \end{array} $
· · · · · · · · ·	1274	1023	$ \begin{array}{c c} 1 & D & O & \left \begin{array}{c} 251 \\ 342 \\ 0 & 1 & C \\ \hline \hline $	· · · · · · · · · ·	· · · · · · · · ·	
-3	+ 29.26					
	-2+ 1274	· · · · · · · · · ·	Chade: 1/(251+	$182\theta + 26\theta^2 (7-$	$\Phi) = \frac{1}{341} \left(1757 \right)$	$+1023\theta+00^{2}$ -52
· · · · · · ·	341	251	· · · · · · · · · ·	· · · · · · · · ·	$=\frac{1}{341}(170)$	$5 + 1023 \theta$
	341	341	Q[D] 5 extension a	a cubic field of R: His	= 5+30	
			3- dimensi	onal vector space	over Q, with	, bersis ", viv.

Alternatively use 3×3	matrices to represent	entres of alloid		
Take T= [1007 to pores	ent θ . $T^{3} = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$] = 21		
	1 02 - 5 pa 20 2	abce of c	~ · 0 ^{3x3} · · · · · · · · · · · ·	
$E = \{aI + b + c[-] : a$	$b, c \in W_{3}^{-}$ } $\begin{bmatrix} 0 & 0 \\ - & 0 \end{bmatrix}$		- totive	
		tt z culation is	ring with identify	
Q[0] & E via the i	somerphism	a field.	having tero devisors	
ψ				
4+60+c0 ~ aI+bT+cl				
		AFET or between	Q and Q(Q) - 22 - 1 - 1	
Are those any fields be	etween () and (K[V2], 0. 0.		
Are there any fields	between the and		fron com	
		D P.M. I Lik a	Subtreve of L and "	15 9
Suppose REFC	I is a tower a	of fields (Fis a	subtret of and in	15 4 T in
Suppose REFC subfield of F)	C is a tower a	of fields (Fis a 'C' always	means strict containment this course.	15 4
Suppose REFC subfield of F)	C is a tower a C vs C S vs <	of fields (Fis a 'C' always	means strict containment this course.	15 q
Suppose R E F C (subfield of F). Since F D R, there exis	$C is a tower a$ $C vs C$ $s vs C$ $ts v \in F, v \notin R, \tau$	of fields (Fis a 'C' always Then a, 1 are linearly	means strict containment this course. I independent over R	
Suppose $R \in F \subset G$ subfield of F). Since $F \supset R$, there exis i.e. $q \neq q.1$ for any	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	of fields (Fis a 'C' always Then a, 1 are linearly [is 2-dimensional	means strict containment this course. independent over R over R with basis 1;	
Suppose R E F C (subfield of F). Since F D R, there exis i.e. & \$= a.1 for any (every complex number is	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	of fields (Fis a 'C' always Then d, 1 are linearly C is 2-dimensional k as Z= a.1+b.i	means strict containment this course. Findependent over R with q, b e R). So 1,	15 42 in
Suppose $R \in F \subset G$ subfield of F). Since $F \supset R$, there exis i.e. $q \neq q.1$ for any (every complex number is hasis for F . So $F=$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	of fields (Fis a 'C' always Then a, 1 are linearly C is 2-dimensional & as Z= a.1+b.i	means strict containment this course. Findependent over R over R with basis 1, with q, b \in R). So 1,	$\frac{15}{10} = \frac{2}{10}$ $\frac{1}{10} = \frac{1}{10}$
Suppose $R \in F \subset G$ subfield of F). Since $F \supset R$, there exis i.e. $q \neq q.1$ for any (every complex number is hasis for F . So $F=$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	of fields (Fis a 'C' always Then a, 1 are linearly C is 2-dimensional & as Z= a.1+b.i	means strict containment this course. independent over R over R with basis 1, with a, b \in R). So 1,	15 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Suppose $R \in F \subset G$ subfield of F). Since $F \supset R$, there exis i.e. $q \neq q.1$ for any (every complex number is hasis for F . So $F=$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	of fields (Fis a 'C' always Then d, 1 are linearly C is 2-dimensional & as Z= a.1+b.i	means strict containment this course. Findependent over R over R with basis 1, with a, b & R). So 1,	15 4 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Suppose $R \in F \subset G$ subfield of F). Since $F \supset R$, there exis i.e. $q \neq q.1$ for any (every complex number is hasis for F . So $F=$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	of fields (Fis a 'C' always Then a, 1 are linearly C is 2-dimensional & as Z= a.1+b.i	means strict containment this course. independent over R over R with basis 1, with q, b \in R). So 1,	15 - 2 1 - 1 - 1 1 - 1 - 1 1 - 1 - 1 - 1 1
Suppose $R \in F \subset G$ subfield of F). Since $F \supset R$, there exis i.e. $q \neq q.1$ for any (every complex number is hasis for F . So $F=$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	of fields (Fis a 'C' always Then a, 1 are linearly C is 2-dimensional & as Z= a.1+b.i	subtreve et il and " means strict containment this course. independent over R over R with basis 1, with a, b & R). So 1,	15 4 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

Is there any field extension CCF with F 2-dimensional over C ? No, but there do exist fields FDC which are infinite dimensional extensions. Consider the ring C[x] = Epolynomials in x with complex coefficients } is a ring but not quite a field eq. $a_1 = \{a_1 + a_2 x^2 + \dots + a_n x^n : a_i \in \mathbb{C}, n \ge 0\}$ 5+7x+ix2 $3 - (4+i)x + 43x^2 \notin \mathbb{C}[x]$ C(x) = field of fractions of C[x]= field of notional functions in x with complex coefficients Just like constructing @ from Z