
Practice Problems 1
October, 2024

The following are problems suggested for further practice on the content prior to
the Test on Monday, November 4. These problems range in difficulty, from easy to
challenging (yet do-able).

1. Find the minimal polynomial of α = 21/3 + 22/3 over Q.

2. Let ζ be a complex root of f(x) = x4 + 1 ∈ Q[x]. Show that f(x) is irreducible in

Q[x], and that f(x) = (x− ζ)(x− ζ3)(x− ζ5)(x− ζ7). Find all automorphisms of the

field E = Q[ζ].

3. Imitate one of the examples done in class to show that the splitting field E ⊃ Q of the

polynomial f(x) = x3 − 3x+ 1 is a Galois extension with cyclic automorphism group

G = AutE. (Hint: Check that the map t 7→ 2− t− t2 cyclically permutes the three

roots of f(x).)

4. Let E ⊃ Q be a quadratic extension, i.e. a field extension of degree 2. Show that

E ∼= Q[
√
m] where m is an integer, m ≡ 1, 2 or 3 mod 4.

5. Let α =
√

5 +
√

22 + 2
√

5.

(a) Find the minimal polynomial of α over Q.

(b) Prove that
√

11 + 2
√

29 +

√
16− 2

√
29 + 2

√
55− 10

√
29 = α.

6. Let α, β, γ ∈ C be the three roots of m(x) = x3 − 7x2 + 5x+ 3. Compute each of the

following. Each of your answers should be expressed simply as an integer.

(a) α+ β + γ

(b) αβγ

(c) α2 + β2 + γ2

7. Find three 3× 3 matrices A,B,C with rational entries satisfying

A+B + C = −I AB +AC +BC = −2I, ABC = I,

A2 − 2I = B, B2 − 2I = C, C2 − 2I = A.

Theorem 1. There exist irrational numbers α and β such that αβ is rational.

Proof. Let γ =
√

2
√
2
. If γ is rational then we are done. Otherwise γ /∈ Q and γ

√
2 =√

2
2

= 2 is rational as required.



The proof given for Theorem 1 is nonconstructive in the sense that it proves the assertion

without actually providing an example. (It does not actually answer whether or not
√

2
√
2

is rational). Recall that a number α ∈ C is algebraic (over Q) if it is a root of some
nonzero polynomial f(x) ∈ Q[x]. In this case, f(x) can be taken to be monic (its leading
coefficient is 1); and the minimal polynomial of α (over Q) is the unique monic polynomial
f(x) ∈ Q[x] of smallest possible degree, having α as a root. In this case, f(x) ∈ Q[x] is
irreducible; and the polynomials in Q[x] having α as a root are precisely the multiples of
f(x). If α is not algebraic over Q, then we say it is transcendental.

The Gelfond-Schneider Theorem asserts that if α, β are complex numbers, algebraic
over Q, with α /∈ {0, 1} and β irrational, then every value of αβ is transcendental.

‘Every value’ is a reminder that αβ may have more than one value, just as α1/2 has
two values whenever α 6= 0. To define αβ , first write α = eγ and then take αβ = eβγ .
Although the exponential function z 7→ ez is well-defined, the value of γ = lnα is not
well-defined: If α = reiθ where r, θ ∈ R with r > 0, then we may take γ = ln r+ (θ+ 2kπ)i
where k an arbitrary integer; and then αβ = eβ ln r+β(θ+2kπ)i is another possible value
for αβ .

8. (a) Find all possible values of ii. (Use the fact that ex+yi = exeyi = ex(cos y+ i sin y)
whenever x, y ∈ R.) By the Gelfond-Schneider Theorem, all these values of ii are
transcendental.

(b) Use the Gelfond-Schneider Theorem to give a constructive proof of Theorem 1
above.

9. Using the fact that π is transcendental, show that
√
π2 − 1 is also transcendental.

In preparation for #10,11, let us evaluate the continued fraction α = 1 + 1
1+ 1

1+ 1

1+ 1
1+···

in

closed form. Since α = 1 + 1
α , we see that α2 − α − 1 = 0 and so α = 1±

√
5

2 . Evidently

α > 0, and so α = 1+
√
5

2 .

10. Is
√

2
√
2
√

2

√
2

etc.

rational, algebraic irrational, or transcendental? Justify your answer.

11. Let x =

√√√√
5 +

√
5−

√
5 +

√
5−

√
5 +
√

5− · · · . Show that x is algebraic, and find

its minimal polynomial over Q.

12. Let α = 21/3. Show that α cannot be expressed as a rational linear combination of
square roots of rational numbers, i.e. for any rational numbers a1, bi (i = 1, 2, . . . , n),
the value of a1

√
b1 + a2

√
b2 + · · ·+ an

√
bn cannot equal α.


